Skip to main content
Log in

Numerical methods for on-line power system load flow analysis

  • Original Paper
  • Published:
Energy Systems Aims and scope Submit manuscript

Abstract

Newton-Raphson method is the most widely accepted load flow solution algorithm. However LU factorization remains a computationally challenging task to meet the real-time needs of the power system. This paper proposes the application of very fast multifrontal direct linear solvers for solving the linear system sub-problem of power system real-time load flow analysis by utilizing the state-of-the-art algorithms for ordering and preprocessing. Additionally the unsymmetric multifrontal method for LU factorization and highly optimized Intel® Math Kernel Library BLAS has been used. Two state-of-the-art multifrontal algorithms for unsymmetric matrices namely UMFPACK V5.2.0 and sequential MUMPS 4.8.3 (“Multifrontal Massively Parallel Solver”) are customized for the AC power system Newton-Raphson based load flow analysis. The multifrontal solvers are compared against the state-of-the-art sparse Gaussian Elimination based HSL sparse solver MA48. This study evaluates the performance of above multifrontal solvers in terms of number of factors, computational time, number of floating-point operations and memory, in the context of load flow solution on nine systems including very large real power systems. The results of the performance evaluation are reported. The proposed method achieves significant reduction in computational time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Powell, L.: Power System Load Flow Analysis. McGraw-Hill, New York (2004)

    Google Scholar 

  2. Khaitan, S., McCalley, J., Chen, Q.: Multifrontal solver for online power system time domain simulation. IEEE Trans. Power Syst. 23, 4 (2008)

    Article  Google Scholar 

  3. Orfanogianni, T., Bacher, R.: Using automatic code differentiation in power flow algorithms. IEEE Trans. Power Syst. 14, 1 (1999)

    Article  Google Scholar 

  4. Davis, T., Duf, I.: UMFPACK version 2.0: unsymmetric-pattern multifrontal package (1995). See: http://www.cis.ufl.edu/-davis

  5. Davis, T., Duff, I.: A combined unifrontal/multifrontal method for unsymmetric sparse matrices. ACM Trans. Math. Softw. 25, 1–19 (1997)

    Article  MathSciNet  Google Scholar 

  6. Davis, T.: Algorithm 832: UMFPACK—an unsymmetric-pattern multifrontal method. ACM Trans. Math. Softw. 30, 196–199 (2004)

    Article  MATH  Google Scholar 

  7. Davis, T.: A column pre-ordering strategy for the unsymmetric-pattern multi-frontal method. ACM Trans. Math. Softw. 30, 165–195 (2004)

    Article  MATH  Google Scholar 

  8. Davis, T., Amestoy, P., Duff, I.: Algorithm 837: AMD, an approximate minimum degree ordering algorithm. ACM Trans. Math. Softw. 30, 381–388 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  9. Davis, T., Gilbert, J., Larimore, E.: Algorithm 836: COLAMD, an approximate column minimum degree ordering algorithm. ACM Trans. Math. Softw. 30, 377–380 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  10. Ashcraft, C., Grimes, R.: The influence of relaxed supernode partitions on the multifrontal method. ACM Trans. Math. Softw. 15, 291–309 (1989)

    Article  MATH  Google Scholar 

  11. Heath, M., Raghavan, P.: A Cartesian parallel nested dissection algorithm. SIAM J. Matrix Anal. Appl. 16, 235–253 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  12. Gupta, A., Gustavson, F., Joshi, M., Karypis, G., Kumar, V.: PSPASES: an efficient and parallel sparse direct solver. In: Yang, T. (ed.) Kluwer Int. Series in Engineering and Science, vol. 515. Kluwer Academic, Dordrecht (1999)

    Google Scholar 

  13. Johnson, J., Vachranukunkiet, P., Tiwari, S., Nagvajara, P., Nwankpa, C.: Performance analysis of loadflow computation using FPGA. In: Proc. of 15th Power Systems Computation Conference 2005

  14. Zaoui, F., Fliscounakis, S.: A direct approach for the security constrained optimal power flow problem. In: Power Systems Conference and Exposition 2006

  15. Amestoy, P., Duff, I.: Vectorization of a multiprocessor multifrontal code. Int. J. Supercomput. Appl. 3, 41–59 (1989)

    Article  Google Scholar 

  16. Amestoy, P., Duff, I., L’Excellent, J., Koster, J.: A fully asynchronous multifrontal solver using distributed dynamic scheduling. SIAM J. Matrix Anal. Appl. 23, 15–41 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  17. Amestoy, P., Puglisi, C.: An unsymmetrized multifrontal LU factorization. SIAM J. Matrix Anal. Appl. 24, 553–569 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  18. Amestoy, P., Duff, I., Puglisi, C.: Multifrontal QR factorization in a multiprocessor environment. Numer. Linear Algebra Appl. 3, 275–300 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  19. Duff, I., Reid, J.: The multifrontal solution of indefinite sparse symmetric linear systems. ACM Trans. Math. Softw. 9, 302–325 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  20. Duff, I., Reid, J.: The multifrontal solution of unsymmetric sets of linear systems. SIAM J. Sci. Stat. Comput. 5, 633–641 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  21. Guermouche, A., L’Excellent, J.-Y.: Constructing memory-minimizing schedules for multifrontal methods. ACM Trans. Math. Softw. 32(1), 17–32 (2006)

    Article  MathSciNet  Google Scholar 

  22. Karypis, G., Kumar, V.: METIS—A Software Package for Partitioning Unstructured Graphs, Partitioning Meshes, and Computing Fill-Reducing Orderings of Sparse Matrices—Version 4.0. University of Minnesota (1998)

  23. Schulze, J.: Towards a tighter coupling of bottom-up and top-down sparse matrix ordering methods. BIT 41(4), 800–841 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  24. Pellegrini, F.: SCOTCH 5.0 User’s guide. Technical Report, LaBRI, Université Bordeaux I (August 2007)

  25. Amestoy, P.R., Davis, T.A., Duff, I.S.: An approximate minimum degree ordering algorithm. SIAM J. Matrix Anal. Appl. 17, 886–905 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  26. Richardy, G.: Coupling MUMPS and ordering software. CERFACS report WN/PA/02/24 (January 2002)

  27. Dongarra, J., Du Croz, J., Hammarling, S.: A set of level 3 basic linear algebra subprograms. ACM Trans. Math. Softw. 16, 1–17 (1990)

    Article  MATH  Google Scholar 

  28. Duff, I.S., Reid, J.K.: The design of MA48, a code for the direct solution of sparse unsymmetric linear systems of equations. ACM Trans. Math. Softw. 22, 187–226 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  29. Li, X.: Direct solvers for sparse matrices. Available online http://crd.lbl.gov/~xiaoye/SuperLU/SparseDirectSurvey.pdf (2006)

  30. Liu, J.: The multifrontal method for sparse matrix solution: theory and practice. SIAM Rev. 34, 82–109 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  31. Snir, M., Otto, S.W., Huss-Lederman, S., Walker, D.W., Dongarra, J.: MPI: The Complete Reference. MIT Press, Cambridge (1996)

    Google Scholar 

  32. Blackford, L.S., Choi, J., Cleary, A., D’Azevedo, E., Demmel, J., Dhillon, I., Dongarra, J., Hammarling, S., Henry, G., Petitet, A., Stanley, K., Walker, D., Whaley, R.C.: ScaLAPACK Users’ Guide. SIAM Press, Philadelphia (1997)

    MATH  Google Scholar 

  33. Gupta, A.: Recent advances in direct methods for solving unsymmetric sparse systems of linear equations. IBM Research Report, RC 22039 (98933) April 20 (2001)

  34. The reliability test system task force of the application of probability methods subcommittee. IEEE reliability test system. IEEE Trans. Power Apparatus Syst. PAS-98, 2047–2045 (1979)

  35. The reliability test system task force of the application of probability methods subcommittee. The IEEE reliability test system—1996. IEEE Trans. Power Syst. 14(3), 1010–1018 (1999)

  36. http://www.powerworld.com/DocumentLibrary.asp

  37. http://www.digsilent.de/

  38. Nanda, J., Lai, L.L., Ma, J.T., Rajkumar, N., Nanda, A., Prasad, M.: A novel approach to computational efficient algorithms for transmission loss and line flow formulations. Int. J. Electr. Power Energy Syst. 555–560 (1999)

  39. Li, M., Zhao, Q., Luh, P.B.: Decoupled load flow and its feasibility in systems with dynamic topology. In: PES’09, 26–30 July 2009, pp. 1–8 (2009)

  40. Jean-Jumeau, R., Chiang, H.-D.: Parameterizations of the load-flow equations for eliminating ill-conditioning load flow solutions. IEEE Trans. Power Syst. 3(3), 1004–1012 (1993)

    Article  Google Scholar 

  41. Dasgupta, K., Swarup, K.S.: Distributed fast decoupled load flow analysis. In: POWERCON, pp. 1–6 (2008)

  42. Nanda, J., Bijwe, P.R., Henry, J., Bapi Raju, V.: General purpose fast decoupled power flow. IEE Proc. Gen. Trans. Dist. 139(2), 87–92 (1992)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siddhartha Kumar Khaitan.

Additional information

This work was supported in part by U.S. Department of Energy Consortium for Electric Reliability Technology Solutions (CERTS).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khaitan, S.K., McCalley, J.D. & Raju, M. Numerical methods for on-line power system load flow analysis. Energy Syst 1, 273–289 (2010). https://doi.org/10.1007/s12667-010-0013-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12667-010-0013-6

Keywords

Navigation