Skip to main content
Log in

Newtonian viscous creep in metals

  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

All materials exhibit Newtonian viscous creep behavior at low stresses and high temperatures. We review here such creep behaviors in metals comprising of pure metals and alloys. The underlying creep mechanism(s) depends mainly on the grain size and test temperature while other factors such as the initial dislocation density might also be a factor. Coble creep due to diffusion of point defects through grain boundaries is known to be the dominant creep mechanism in metals with very small grain sizes and relatively low temperatures while Nabarro-Herring creep becomes important for intermediate grain sizes and/or high temperatures. Large grain size and bulk single crystalline metals exhibit Harper-Dorn creep due to dislocation motion rather than point defect diffusion-dominated mechanisms albeit the underlying mechanism is still unclear. Microstructural studies of the specimens deformed in the Harper-Dorn regime have provided some insights. Recent studies suggest that microstructural characterization of deformed specimens is necessary for accurate determination of the rate controlling mechanism. The aim of this paper is two fold namely, to first review the viscous creep mechanisms and to present recent results on Ti3Al2.5V alloy emphasizing the importance of post creep microstructural characterization in establishing the rate controlling mechanism(s).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nabarro F R N, Report of conference on solids, The Physical Society, London (1948) 75.

    Google Scholar 

  2. Herrin C G, J. Appl. Phys 21 (1950) 437.

    Article  ADS  Google Scholar 

  3. Coble R L, J. Appl. Phys 34 (1963) 1679.

    Article  ADS  Google Scholar 

  4. Arzt E, Ashby M F and Verall R A, Acta Metall., 31 (1983) 1977.

    Article  CAS  Google Scholar 

  5. Jones R B, Nature, 207 (1965) 70.

    Article  CAS  ADS  Google Scholar 

  6. Burton B and Greenwood G W, Acta Metall., 18 (1970) 1237.

    Article  CAS  Google Scholar 

  7. Harris K E and King A H, Acta Mater., 46 (1998) 6195.

    Article  CAS  Google Scholar 

  8. Warshaw S I and Norton F H, J. Am. Ceram. Soc., 45 (1962) 479.

    Article  CAS  Google Scholar 

  9. Chang R, J. Nucl. Mater., 2 (1959) 174.

    Article  ADS  Google Scholar 

  10. Burton B and Greenwood G.W, J. Met. Sci., 4 (1970) 215.

    CAS  Google Scholar 

  11. Ashby M F, Verrall R A, Acta Metall., 21 (1973) 149.

    Article  CAS  Google Scholar 

  12. Squires R L, Weiner R T and Phillips M, J. Nuclear Mat., 8 (1963) 77.

    Article  CAS  ADS  Google Scholar 

  13. Vickers W and Greenfield P, J. Nucl. Mater., 24 (1967) 249.

    Article  CAS  ADS  Google Scholar 

  14. Raraty L E, J. Nucl. Mater., 20 (1966) 344.

    Article  CAS  ADS  Google Scholar 

  15. Wolfenstine J, Ruano O A, Wadsworth J and Sherby O D, Scr. Metall. Mater., 29 (1993) 515.

    Article  CAS  Google Scholar 

  16. Wadsworth J, Ruano O A and Sherby O D, Metall. Mater. Trans., 33A (2002) 219.

    Article  CAS  Google Scholar 

  17. Greenwood G W, Scr. Metall. Mater., 30 (1994) 1527.

    Article  CAS  ADS  Google Scholar 

  18. Bilde-Sorensen J B and Smith D A, Scripta Metall. Mater., 30 (1994) 383.

    Article  Google Scholar 

  19. Burton B and Reynolds G L, Mater. Sci. Engg., 191A (1995) 135.

    Google Scholar 

  20. Jaeger W and Gleiter H, Scripta Metall., 12 (1978) 675.

    Article  CAS  Google Scholar 

  21. McNee K R, Greenwood G W and Jones H, Scripta Mater., 47 (2002) 619.

    Article  CAS  Google Scholar 

  22. Harper J and Dorn J E, Acta Metall., 5 (1957) 654.

    Article  CAS  Google Scholar 

  23. Harper J G, Shepard L A and Dorn J E, Acta Metall., 4 (1958) 509.

    Google Scholar 

  24. Weertman J, Trans. Am. Soc. Met., 61 (1968) 681.

    CAS  Google Scholar 

  25. Friedel J, Dislocations, Pergamon Press, Oxford, (1964).

    MATH  Google Scholar 

  26. Barrett C R, Muehlesien E C and Nix W D, Mater. Sci. Engg., 10 (1972) 33.

    Article  CAS  Google Scholar 

  27. Mohamed F A, Murty K L and Morris J W, in Rate Processes in Plastic Deformation of Materials, (Eds.) J.C.M. Li, A.K. Mukherjee, American Society for Metals, Metal Park, OH (1975) 459.

    Google Scholar 

  28. Langdon T G and Yavari P, Acta Metall., 30 (1982) 881.

    Article  CAS  Google Scholar 

  29. Wu M Y and Sherby O D, Acta Metall,. 32 (1984) 1561.

    Article  CAS  Google Scholar 

  30. Weertman J and Blacic J, Geophys. Res. Lett., 11 (1984) 117.

    Article  ADS  Google Scholar 

  31. Nabarro F R N, Acta Metall., 37 (1989) 2217.

    Article  CAS  Google Scholar 

  32. Ardell A J and Lee S S, Acta Metall., 34 (1986) 2411.

    Article  CAS  Google Scholar 

  33. Ardell A J, Acta Mater., 45 (1997) 2971.

    Article  CAS  Google Scholar 

  34. Murty K L, Mohamed F A and Dorn J E, Acta Metall., 20 (1972) 1009.

    Article  CAS  Google Scholar 

  35. Murty K L, Mater. Sci. Engg., 14 (1974) 169.

    Article  CAS  Google Scholar 

  36. Mohamed F A, Murty K L and Morris J W, Metall. Trans., 4 (1973) 935.

    Article  CAS  Google Scholar 

  37. Mohamed F A, Metall. Trans., 9A (1978) 1343.

    Google Scholar 

  38. Blum W and Maier W, Phys. Stat. Sol., 171 (1999) 467.

    Article  CAS  ADS  Google Scholar 

  39. Muehleisen E C, Barrett C R and Nix W D, Scripta Metall., 4 (1970) 995.

    Article  CAS  Google Scholar 

  40. Burton B, Phil. Mag., 25 (1972) 645.

    Article  ADS  Google Scholar 

  41. McNeee K R, Jones H and Greenwood G W, in Creep and Fracture of Engineering Materials and Structures, (ed.) Parker J D, The Institute of Materials, London, U.K., (2001) 185.

    Google Scholar 

  42. Mohamed F A and Ginter T J, Acta Metall., 30 (1982) 1869.

    Article  Google Scholar 

  43. Ginter T J, Chaudhury P K and Mohamed F A, Acta Mater., 49 (2001) 263.

    Article  CAS  Google Scholar 

  44. Ginter T J and Mohamed F A, Mater. Sci. Engg., 322A (2002) 148.

    Google Scholar 

  45. Gifkins R C, J. Inst. Metals, 87 (1958) 255.

    Google Scholar 

  46. Malakondaiah G and Rama Rao P, Scripta Metall., 13 (1979) 1187.

    Article  CAS  Google Scholar 

  47. Malakondaiah G and Rama Rao P, Acta Metall., 29 (1981) 1263.

    Article  CAS  Google Scholar 

  48. Malakondaiah G and Rama Rao P, Mater. Sci. Engg., 52 (1982) 207.

    Article  CAS  Google Scholar 

  49. Fiala J, Novotny J and Cadek J, Mater. Sci. Engg., 60 (1983) 195.

    Article  CAS  Google Scholar 

  50. Chokshi A H, Scripta Metall., 19 (1985) 529.

    Article  CAS  Google Scholar 

  51. Kumar P, Kassner M E and Langdon T G, J. Mater. Sci., 42 (2007) 409.

    Article  CAS  ADS  Google Scholar 

  52. Chokshi A H, Mater. Sci. Engg., 483–484A (2008) 485.

    Google Scholar 

  53. Nieman G W, Weertman J R and Siegel R W, J. Mat. Res., 6 (1991) 1012.

    Article  CAS  ADS  Google Scholar 

  54. Sanders P G, Rittner M, Kiedaisch E, Weertman J R, Kung H and Lu Y C, Nanostr. Mater., 9 (1997) 433.

    Article  CAS  Google Scholar 

  55. Mishra R S, Jones H and Greenwood G W, Scripta Metall., 22 (1988) 323.

    Article  CAS  Google Scholar 

  56. Pines Y B, and Sirenko A F, Fiz. Met. Metalloved., 15 (1963) 584.

    CAS  Google Scholar 

  57. Gollapudi S, Bhosle V, Charit I and Murty K L, Phil. Mag., 88 (2008) 1357

    Article  CAS  ADS  Google Scholar 

  58. Spingarn J R and Nix W D, Acta Metall., 27 (1979) 171.

    Article  CAS  Google Scholar 

  59. Zhu Y T and Langdon T G, Mater. Sci. Engg., 409A (2005) 234.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Linga Murty.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Linga Murty, K., Gollapudi, S. & Charit, I. Newtonian viscous creep in metals. Trans Indian Inst Met 63, 85–91 (2010). https://doi.org/10.1007/s12666-010-0012-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-010-0012-2

Keywords

Navigation