Skip to main content

Advertisement

Log in

Quantifying the hazardous impacts of human-induced land degradation on terrestrial ecosystems: a case study of karst areas of south China

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

This paper assesses the harm that human-induced land degradation poses on terrestrial ecosystems. We propose and define a hazardous impact (HI) indicator and a method to quantify this degradation and promote sustainable land use under the pressure resulting from population growth. Taking human appropriation of the net primary productivity owing to land-use conversion (HANPPluc) as a proxy, the quantification of HI was developed with support from remotely sensed net primary productivity (NPP) data and using the co-kriging method. A case study in the karst area of south China showed that HI in the study area decreased from southwest to northeast. Areas with the highest level of HI occupied 4.77 % of the total area and were distributed in northwest Sichuan Province, southwest Yunnan Province, and southern Guangxi Autonomous Region. Lower HI areas were mainly located in Hunan Province and Hubei Province. This indicates that land use has a strong impact on karst rocky desertification. To maintain a decreasing trend in HI, a land-use policy must guide human activity. In the karst areas of south China, HI and rocky desertification have similar spatial distribution and intensity. This suggests that HI can effectively reveal adverse effects on the ecosystem due to human-induced land degradation, and that it can potentially be applied to other related issues. We also argue that NPP reduction and HI level do not follow a simple 1:1 relationship, so revisions may be needed when applying the proposed indicator and approach to other regions. This approach also needs to be improved in its accuracy in terms of natural vegetation extraction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Alves M, Carvalho L, Oliveira M (2013) Terrestrial Earth couple climate-carbon spatial variability and uncertainty. Glob Planet Change 111:9–30

    Article  Google Scholar 

  • Bai Z, Dent D, Olsson L et al (2008) Proxy global assessment of land degradation. Soil Use Manag 24:223–234

    Article  Google Scholar 

  • Bai Z, Conijn J, Bindraban P et al (2012) Global changes of remotely sensed greenness and simulated biomass production since 1981; towards mapping global soil degradation. ISRIC Report 2012/02. ISRIC, Wageningen

  • Bai X, Wang S, Xiong K (2013) Assessing spatial–temporal evolution processes of karst rocky desertification land: indications for restoration strategies. Land Degrad Dev 24:47–56

    Article  Google Scholar 

  • Blaikie P, Cannon T, Davis I et al (2014) At risk: natural hazards, people’s vulnerability and disasters. Routledge, London

    Google Scholar 

  • Boer M, Puigdefabregas J (2003) Predicting potential vegetation index values as a reference for the assessment and monitoring of dryland condition. Int J Remote Sens 24:1135–1141

    Article  Google Scholar 

  • Brandt J, Kuemmerle T, Li H et al (2012) Using Landsat imagery to map forest change in southwest China in response to the national logging ban and ecotourism development. Remote Sens Environ 121:358–369

    Article  Google Scholar 

  • Bridges E, Oldeman L (1999) Global assessment of human-induced soil degradation. Arid Soil Res Rehab 13:319–325. doi:10.1080/089030699263212

    Article  Google Scholar 

  • Burton I (1993) The environment as hazard. Guilford Press, New York

    Google Scholar 

  • Cai Y (1996) Preliminary research on ecological reconstruction in karst mountain poverty areas of southwest. China Adv Earth Sci 11:602–606 (in Chinese with English abstract)

    Google Scholar 

  • Cao S, Ma H, Yuan W et al (2014) Interaction of ecological and social factors affects vegetation recovery in China. Biol Conserv 180:270–277. doi:10.1016/j.biocon.2014.10.009

    Article  Google Scholar 

  • Conijn J, Bai Z, Bindraban P et al (2013) Global changes of net primary productivity, affected by climate and abrupt land use changes since 1981; towards mapping global soil degradation. ISRIC Report 2013/01, ISRIC-World Soil Information, Wageningen

  • Couckuyt I, Koziel S, Dhaene T (2013) Surrogate modeling of microwave structures using kriging, co-kriging, and space mapping. Int J Numer Model Electron Netw Dev Fields 26:64–73

    Article  Google Scholar 

  • Daily G (1995) Restoring value to the world’s degraded lands. Science 269:350

    Article  Google Scholar 

  • de Jong R, de Bruin S, Schaepman M et al (2011) Quantitative mapping of global land degradation using earth observations. Int J Remote Sens 32:6823–6853

    Article  Google Scholar 

  • Diouf A, Lambin E (2001) Monitoring land-cover changes in semi-arid regions: remote sensing data and field observations in the Ferlo, Senegal. J Arid Environ 48:129–148

    Article  Google Scholar 

  • Du H, Peng W, Song T et al (2013) Plant community characteristics and its coupling relationships with soil in depressions between karst hills, North Guangxi, China. Chin J Plant Ecol 37:197–208 (in Chinese with English abstract)

    Article  Google Scholar 

  • Erb K, Haberl H, Jepsen M et al (2013) A conceptual framework for analysing and measuring land-use intensity. Curr Opin Environ Sustain 5:464–470. doi:10.1016/j.cosust.2013.07.010

    Article  Google Scholar 

  • Evans J, Geerken R (2004) Discrimination between climate and human-induced dryland degradation. J Arid Environ 57:535–554. doi:10.1016/S0140-1963(03)00121-6

    Article  Google Scholar 

  • Fasona M, Omojola A (2009) Land cover change and land degradation in parts of the southwest coast of Nigeria. Afr J Ecol 47:30–38

    Article  Google Scholar 

  • Fischer-Kowalski M, Haberl H (1998) Sustainable development: socio-economic metabolism and colonization of nature. Int Soc Sci J 50:573–587

    Article  Google Scholar 

  • Foley J, DeFries R, Asner G et al (2005) Global consequences of land use. Science 309:570–574

    Article  Google Scholar 

  • Ford DC, Williams PW (1989) Karst geomorphology and hydrology. Unwin Hyman, London

    Book  Google Scholar 

  • Friedl M, Sulla-Menashe D, Tan B et al (2010) MODIS Collection 5 global land cover: algorithm refinements and characterization of new datasets. Remote Sens Environ 114:168–182

    Article  Google Scholar 

  • Gong G, Mattevada S, O’Bryant S (2014) Comparison of the accuracy of kriging and IDW interpolations in estimating groundwater arsenic concentrations in Texas. Environ Res 130:59–69

    Article  Google Scholar 

  • Grau H, Aide T, Zimmerman J et al (2003) The ecological consequences of socioeconomic and land-use changes in postagriculture Puerto Rico. Bioscience 53:1159–1168

    Article  Google Scholar 

  • Griffith D, Ramkilowan A, Sprung D et al (2014) Exploration of satellite-derived data products for atmospheric turbulence studies. In: Comerón A, Kassianov E, Schäfer K et al (eds) Remote Sensing of Clouds and the Atmosphere XIX; and Optics in Atmospheric Propagation and Adaptive Systems XVII Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, pp 1–14. doi:10.1117/12.2071893

  • Gutiérrez F, Parise M, De Waele J et al (2014) A review on natural and human-induced geohazards and impacts in karst. Earth Sci Rev 138:61–88

    Article  Google Scholar 

  • Haberl H, Erb K, Krausmann F et al (2001) Changes in ecosystem processes induced by land use: human appropriation of aboveground NPP and its influence on standing crop in Austria. Glob Biogeochem Cycles 15:929–942. doi:10.1029/2000gb001280

    Article  Google Scholar 

  • Haberl H, Fischer-Kowalski M, Krausmann F et al (2004a) Progress towards sustainability? What the conceptual framework of material and energy flow accounting (MEFA) can offer. Land Use Policy 21:199–213

    Article  Google Scholar 

  • Haberl H, Wackernagel M, Wrbka T (2004b) Land use and sustainability indicators. An introduction. Land Use Policy 21:193–198

    Article  Google Scholar 

  • Haberl H, Erb K, Krausmann F et al (2007) Quantifying and mapping the human appropriation of net primary production in earth’s terrestrial ecosystems. Proc Natl Acad Sci USA 104:12942–12947. doi:10.1073/pnas.0704243104

    Article  Google Scholar 

  • Haberl H, Erb K, Krausmann F (2014) Human appropriation of net primary production: patterns, trends, and planetary boundaries. Annu Rev Environ Resour 39:363–391. doi:10.1146/annurev-environ-121912-094620

    Article  Google Scholar 

  • Haboudane D, Bonn F, Royer A et al (2002) Land degradation and erosion risk mapping by fusion of spectrally-based information and digital geomorphometric attributes. Int J Remote Sens 23:3795–3820

    Article  Google Scholar 

  • Hobbs R, Harris J (2001) Restoration ecology: repairing the earth’s ecosystems in the new millennium. Restor Ecol 9:239–246

    Article  Google Scholar 

  • Huang Q, Cai Y, Xing X (2008) Rocky desertification, antidesertification, and sustainable development in the karst mountain region of Southwest China. AMBIO 37(5):390–392

    Article  Google Scholar 

  • Huang X, Lin D, Wang J (2013) Temporal and spatial NPP variation in the Karst region in south China under the background of climate change. Sci Silvae Sin 49:10–16 (in Chinese with English abstract)

    Google Scholar 

  • Hutchinson G (1965) The niche: an abstractly inhabited hyper volume. In: Hutchinson G (ed) The ecological theater and the evolutionary play. Yale University Press, New Haven, pp 26–78

  • Indiarto D, Sulistyawati E (2014) Monitoring net primary productivity dynamics in Java island using MODIS satellite imagery. Asian J Geoinform 14:8–14

    Google Scholar 

  • IUCN and UNEP-WCMC (2015) The world database on protected areas (WDPA) [on-line], [03/2015]. UNEP-WCMC, Cambridge. www.protectedplanet.net

  • Jiang B (2013) Head/tail breaks: a new classification scheme for data with a heavy-tailed distribution. Prof Geogr 65:482–494

    Article  Google Scholar 

  • Jiang Z, Lian Y, Qin X (2014) Rocky desertification in Southwest China: impacts, causes, and restoration. Earth Sci Rev 132:1–12

    Article  Google Scholar 

  • Johnston K, Ver Hoef JM, Krivoruchko K et al (2001) Using ArcGIS geostatistical analyst. ESRI, Redlands

    Google Scholar 

  • Kennedy M, O’Hagan A (2000) Predicting the output from a complex computer code when fast approximations are available. Biometrika 87:1–13

    Article  Google Scholar 

  • Kiernan K (2010) Environmental degradation in karst areas of Cambodia: a legacy of war? Land Degrad Dev 21:503–519

    Article  Google Scholar 

  • Krausmann F, Haberl H, Schulz NB et al (2003) Land-use change and socio-economic metabolism in Austria—part I: driving forces of land-use change: 1950–1995. Land Use Policy 20:1–20

    Article  Google Scholar 

  • Krausmann F, Erb K, Gingrich S et al (2013) Global human appropriation of net primary production doubled in the 20th century. Proc Natl Acad Sci USA 110:10324–10329. doi:10.1073/pnas.1211349110

    Article  Google Scholar 

  • Kuemmerle T, Erb K, Meyfroidt P et al (2013) Challenges and opportunities in mapping land use intensity globally. Curr Opin Env Sustain 5:484–493. doi:10.1016/j.cosust.2013.06.002

    Article  Google Scholar 

  • Lei D, Shangguan Z, Rui L (2012) Effects of the grain-for-green program on soil erosion in China. Int J Sediment Res 27:120–127

    Article  Google Scholar 

  • Li W (2004) Degradation and restoration of forest ecosystems in China. For Ecol Manag 201:33–41

    Article  Google Scholar 

  • Li J, Heap A (2011) A review of comparative studies of spatial interpolation methods in environmental sciences: performance and impact factors. Ecol Inform 6:228–241

    Article  Google Scholar 

  • Li A, Wu J, Huang J (2012) Distinguishing between human-induced and climate-driven vegetation changes: a critical application of RESTREND in inner Mongolia. Landscape Ecol 27:969–982. doi:10.1007/s10980-012-9751-2

    Article  Google Scholar 

  • Lieth H (1975) Modeling the primary productivity of the world. In: Lieth H, Whittaker R (eds) Primary productivity of the biosphere. Springer, Berlin, pp 237–263

  • Liu T, Zhou G, Dan X (2009) Status quo, cause and prevention of karst stony desertification. Forestry Publishing House, Beijing (in Chinese)

    Google Scholar 

  • Liu Y, Yu D, Su Y et al (2014) Quantifying the effect of trend, fluctuation, and extreme event of climate change on ecosystem productivity. Environ Monit Assess 186:8473–8486

    Article  Google Scholar 

  • Millennium Ecosystem Assessment (2005) Ecosystems and human well-being: synthesis. Island Press, Washington, DC

    Google Scholar 

  • Monfreda C, Ramankutty N, Foley J (2008) Farming the planet: 2. Geographic distribution of crop areas, yields, physiological types, and net primary production in the year 2000. Global Boigeochem Cycles 22(GB1022):1–19. doi:10.1029/2007gb002947

    Google Scholar 

  • Nel J, Le Maitre D, Nel D et al (2014) Natural hazards in a changing world: a case for ecosystem-based management. PLoS One 9:e95942. doi:10.1371/journal.pone.0095942

    Article  Google Scholar 

  • Nicholson S, Tucker C, Ba M (1998) Desertification, drought, and surface vegetation: an example from the West African Sahel. Bull Am Meteorol Soc 79:815–829. doi:10.1175/1520-0477(1998)079<0815:Ddasva>2.0.Co;2

    Article  Google Scholar 

  • Pan S, Tian H, Dangal S et al (2014) Complex spatiotemporal responses of global terrestrial primary production to climate change and increasing atmospheric CO2 in the 21st century. PLoS One 9(11):e112810. doi:10.1371/journal.pone.0112810

    Article  Google Scholar 

  • Peng J, Wang Y, Wu J (2007) Human appropriation of net primary production: an approach for ecological assessment of regional sustainable development. J Nat Resour 22:153–158 (in Chinese with English abstract)

    Google Scholar 

  • Plutzar C, Kroisleitner C, Haberl H et al (2016) Changes in the spatial patterns of human appropriation of net primary production (HANPP) in Europe 1990–2006. Reg Environ Change 16(5):1225–1238. doi:10.1007/s10113-015-0820-3

    Article  Google Scholar 

  • Prince S (2002) Spatial and temporal scales for detection of desertification. In: Reynolds JF, Stafford Smith D (eds) Global desertification: do humans cause deserts?. Dahlem University Press, Berlin, pp 23–40

    Google Scholar 

  • Prince S, De Colstoun E, Kravitz L (1998) Evidence from rain-use efficiencies does not indicate extensive Sahelian desertification. Glob Change Biol 4:359–374. doi:10.1046/j.1365-2486.1998.00158.x

    Article  Google Scholar 

  • Prince S, Becker-Reshef I, Rishmawi K (2009) Detection and mapping of long-term land degradation using local net production scaling: application to Zimbabwe. Remote Sens Environ 113:1046–1057. doi:10.1016/j.rse.2009.01.016

    Article  Google Scholar 

  • Qi X, Wang K, Zhang C (2013) Effectiveness of ecological restoration projects in a karst region of southwest China assessed using vegetation succession mapping. Ecol Eng 54:245–253

    Article  Google Scholar 

  • Ramankutty N, Foley J (1999) Estimating historical changes in global land cover: croplands from 1700 to 1992. Glob Biogeochem Cycles 13:997–1027

    Article  Google Scholar 

  • Ray N, Adams J (2001) A GIS-based vegetation map of the world at the last glacial maximum (25,000–15,000 BP). Internet Archaeol 11(1):1–44. doi:10.11141/ia.11.2

    Google Scholar 

  • Reynolds J, Stafford Smith D (2002) Global desertification: do humans cause deserts?. Dahlem University Press, Berlin

    Google Scholar 

  • Reynolds J, Smith D, Lambin E et al (2007) Global desertification: building a science for dryland development. Science 316:847–851

    Article  Google Scholar 

  • Roberts D, Batista G, Pereira J et al (1999) Change identification using multitemporal spectral mixture analysis: applications in eastern Amazonia. In: Lunetta RS, Elvidge CD (eds) Remote sensing change detection: environmental monitoring methods and applications. Ann Arbor Press, Chelsea, pp 137–161

  • Running S, Nemani R, Heinsch F et al (2004) A continuous satellite-derived measure of global terrestrial primary production. Bioscience 54:547–560

    Article  Google Scholar 

  • Scattolin L, Bolzon P, Montecchio L (2008) A geostatistical model to describe root vitality and ectomycorrhization in Norway spruce. Plant Biosyst 142:391–400

    Article  Google Scholar 

  • Scattolin L, Alzetta C, Bolzon P et al (2013) Linden tree stress detection: chlorophyll–nitrogen contents and ectomycorrhizal community. Plant Biosyst 147:364–375

    Article  Google Scholar 

  • Shi P (2002) Theory on disaster science and disaster dynamics. J Nat Disasters 11(3):1–9 (in Chinese with English abstract)

    Google Scholar 

  • Simard M, Pinto N, Fisher J et al (2011) Mapping forest canopy height globally with spaceborne lidar. J Geophys Res: Biogeosciences 116(G04021):1–12

    Google Scholar 

  • Sorrensen C (2009) Potential hazards of land policy: conservation, rural development and fire use in the Brazilian Amazon. Land Use Policy 26:782–791

    Article  Google Scholar 

  • State Forestry Administration of China (2012) Chinese Rocky Desertification Bulletin. http://www.forestry.gov.cn/uploadfile/zsxh/2012-6/file/2012-6-18-8add268dbe3c4180b10408ead795d23c.pdf. Accessed 23 July 2016

  • State Forestry Administration of China (2013) National Forest Park Directory. http://www.forestry.gov.cn/portal/slgy/s/2452/content-684348.html. Accessed 31 December 2015

  • Sweeting M (2012) Karst in China: its geomorphology and environment. Springer, Berlin

    Google Scholar 

  • Tian Y, Haibara K, Toda H et al (2008) Microbial biomass and activity along a natural pH gradient in forest soils in a karst region of the upper Yangtze River, China. J For Res Jpn 13:205–214. doi:10.1007/s10310-008-0073-9

    Article  Google Scholar 

  • Tilman D, Cassman K, Matson P et al (2002) Agricultural sustainability and intensive production practices. Nature 418:671–677

    Article  Google Scholar 

  • Tobler W (1970) A computer movie simulating urban growth in the Detroit region. J Econ Geogr 234–240

  • Uchida E, Xu J, Rozelle S (2005) Grain for green: cost-effectiveness and sustainability of China’s conservation set-aside program. Land Econ 81:247–264

    Article  Google Scholar 

  • UNCCD (1993) Agenda 21: earth summit—the United Nations programme of action. United Nations, New York

    Google Scholar 

  • UNCCD (1994) United Nations Convention to Combat Drought and Desertification in Countries Experiencing Serious Droughts and/or Desertification, Particularly in Africa. http://www.unccd.int/Lists/SiteDocumentLibrary/Publications/UNCCD_Convention_ENG.pdf. Accessed 30 Mar 2016

  • Vitousek P, Mooney H, Lubchenco J et al (1997) Human domination of earth’s ecosystems. Science 277:494–499. doi:10.1126/science.277.5325.494

    Article  Google Scholar 

  • Wang S, Liu Q, Zhang D (2004) Karst rocky desertification in southwestern China: geomorphology, landuse, impact and rehabilitation. Land Degrad Dev 15:115–121

    Article  Google Scholar 

  • Wang G, Innes J, Lei J et al (2007) China’s forestry reforms. Science 318:1556–1557

    Article  Google Scholar 

  • Wang K, Zhang C, Li W (2013) Predictive mapping of soil total nitrogen at a regional scale: a comparison between geographically weighted regression and cokriging. Appl Geogr 42:73–85

    Article  Google Scholar 

  • Wessels K, Prince S, Frost P et al (2004) Assessing the effects of human-induced land degradation in the former homelands of northern South Africa with a 1 km AVHRR NDVI time-series. Remote Sens Environ 91:47–67. doi:10.1016/j.rse.2004.02.005

    Article  Google Scholar 

  • Wessels K, Prince S, Malherbe J et al (2007) Can human-induced land degradation be distinguished from the effects of rainfall variability? A case study in South Africa. J Arid Environ 68:271–297. doi:10.1016/j.jaridenv.2006.05.015

    Article  Google Scholar 

  • Wessels K, Prince S, Reshef I (2008) Mapping land degradation by comparison of vegetation production to spatially derived estimates of potential production. J Arid Environ 72:1940–1949

    Article  Google Scholar 

  • Wessels K, Van Den Bergh F, Scholes R (2012) Limits to detectability of land degradation by trend analysis of vegetation index data. Remote Sens Environ 125:10–22

    Article  Google Scholar 

  • Williams P (1993) Environmental change and human impact on karst terrains: an introduction. Catena 25:1–19

    Google Scholar 

  • Williams P (2008) World heritage caves and karst. IUCN, Gland, p 57

    Google Scholar 

  • Xiao H, Weng Q (2007) The impact of land use and land cover changes on land surface temperature in a karst area of China. J Environ Manage 85:245–257. doi:10.1016/j.jenvman.2006.07.016

    Article  Google Scholar 

  • Xiong Y, Qiu G, Mo D et al (2009) Rocky desertification and its causes in karst areas: a case study in Yongshun County, Hunan Province, China. Environ Geol 57:1481–1488. doi:10.1007/s00254-008-1425-7

    Article  Google Scholar 

  • Xu D, Kang X, Zhuang D et al (2010) Multi-scale quantitative assessment of the relative roles of climate change and human activities in desertification—a case study of the Ordos Plateau, China. J Arid Environ 74:498–507

    Article  Google Scholar 

  • Yue Y, Wang K, Liu B et al (2013) Development of new remote sensing methods for mapping green vegetation and exposed bedrock fractions within heterogeneous landscapes. Int J Remote Sens 34:5136–5153

    Article  Google Scholar 

  • Zeng F, Peng W, Song T et al (2007) Changes in vegetation after 22 years’ natural restoration in the Karst disturbed area in northwestern Guangxi, China. Acta Ecol Sin 27:5110–5119

    Article  Google Scholar 

  • Zhang J, Kalacska M, Turner S (2014) Using landsat thematic mapper records to map land cover change and the impacts of reforestation programmes in the borderlands of southeast Yunnan, China: 1990–2010. Int J Appl Earth Obs Geoinf 31:25–36

    Article  Google Scholar 

  • Zhao M, Running S (2010) Drought-induced reduction in global terrestrial net primary production from 2000 through 2009. Science 329:940–943

    Article  Google Scholar 

  • Zhao M, Heinsch F, Nemani R et al (2005) Improvements of the MODIS terrestrial gross and net primary production global data set. Remote Sens Environ 95:164–176. doi:10.1016/j.rse.2004.12.011

    Article  Google Scholar 

  • Zhou W, Gang C, Zhou F et al (2015) Quantitative assessment of the individual contribution of climate and human factors to desertification in northwest China using net primary productivity as an indicator. Ecol Indic 48:560–569. doi:10.1016/j.ecolind.2014.08.043

    Article  Google Scholar 

  • Zika M, Erb K (2009) The global loss of net primary production resulting from human-induced soil degradation in drylands. Ecol Econ 69:310–318

    Article  Google Scholar 

Download references

Acknowledgments

Support from the National Key Research and Development Program (No. 2016YFA0602402), the National Basic Research Program of China: (Project Nos. 2012CB955403 and 2015CB954102), National Natural Science Foundation of China (Project No.: 41431177), Natural Science Research Program of Jiangsu(14KJA170001), PAPD, and National Key Technology Innovation Project for Water Pollution Control and Remediation (Project No.: 2013ZX07103006) and support from A-Xing Zhu through the Vilas Associate Award, the Hammel Faculty Fellow Award, the Manasse Chair Professorship from the University of Wisconsin-Madison, and the “One-Thousand Talents” Program of China are greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaojie Yue.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, D., Yu, H., Lian, F. et al. Quantifying the hazardous impacts of human-induced land degradation on terrestrial ecosystems: a case study of karst areas of south China. Environ Earth Sci 75, 1127 (2016). https://doi.org/10.1007/s12665-016-5903-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-016-5903-z

Keywords

Navigation