Skip to main content

Advertisement

Log in

Combination of Superheated Steam Explosion and Alkaline Autoclaving Pretreatment for Improvement of Enzymatic Digestibility of the Oil Palm Tree Residues as Alternative Sugar Sources

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Pretreatment processes play an important role in the conversion of lignocelluloses materials to reducing sugar for ethanol production. They help in breaking the structure of lignin and disrupt the crystalline structure of cellulose and hemicellulose, thus improving enzymatic accessibility during hydrolysis. In this study, various alternatives to pretreat oil palm empty fruit bunches (OPEFB), oil palm frond (OPF) and oil palm trunk (OPT) were investigated for improving enzymatic digestibility and fermentable sugars production. The most suitable method was superheated steam explosion followed by alkaline autoclaving pretreatment (SSE–AA). The superheated steam explosion was performed at 180 °C and 0.6 MPa for 5 min (severity factor 3.05), followed by treating with 2–20% (w/v) NaOH at 121 °C for 10–60 min in an autoclave. The SSE–AA treated OPEFB, OPF and OPT had cellulose contents 73.1, 68.7 and 65.3%, respectively. In addition, the enzymatic digestibilities of the treated OPEFB, OPF and OPT pulps were 90.0, 85.15 and 68.73%, respectively, while their glucose yields were 0.90, 0.85 and 0.69 g/g, which were 13.43, 12.35 and 33.71 fold higher than with untreated pulps. Scanning electron microscopy showed that the SSE–AA pretreatment strongly disrupted the fiber structure by removing the cell wall, hydrolyzing both lignin and hemicelluloses, causing swelling and partial rupture of the fibers.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Berndes, G., Hoogwijk, M., van den Broek, R.: The contribution of biomass in the future global energy system: a review of 17 studies. Biomass Bioener. 25, 1–28 (2003)

    Article  Google Scholar 

  2. Hu, F., Ragauskas, A.: Pretreatment and lignocellulosic chemistry. Bioenergy Res. 5, 1043–1066 (2012)

    Article  Google Scholar 

  3. Goh, C.S., Tan, K.T., Lee, K.T., Bhatia, S.: Bio-ethanol from lignocellulose: status, perspectives and challenges in Malaysia. Bioresour. Technol. 101, 4834–4841 (2010)

    Article  Google Scholar 

  4. Otti, V.I., Ifeanyichukwu, H.I., Nwaorum, F.C., Ogbuagu, F.U.: Sustainable oil palm waste management in engineering development. Civ. Environ. Res. 6, 121–125 (2014)

    Google Scholar 

  5. Yusoff, S.: Renewable energy from palm oil—innovation on effective utilization of waste. J. Clean. Prod. 14, 87–93 (2006)

    Article  Google Scholar 

  6. Ang, S.K., Shaza, E.M., Adibah, Y., Suraini, A.A., Madihah, M.S.: Production of cellulases and xylanase by Aspergillus fumigatus SK1 using untreated oil palm trunk through solid state fermentation. Process Biochem. 48, 1293–1302 (2013)

    Article  Google Scholar 

  7. Hamzah, F., Idris, A., Shuan, T.K.: Preliminary study on enzymatic hydrolysis of treated oil palm (Elaeis) empty fruit bunches fibre (EFB) by using combination of cellulase and β 1–4 glucosidase. Biomass Bioener. 35, 1055–1059 (2011)

    Article  Google Scholar 

  8. Hanim, S.S., Noor, M.A.M., Rosma, A.: Effect of autohydrolysis and enzymatic treatment on oil palm (Elaeis guineensis Jacq.) frond fibres for xylose and xylooligosaccharides production. Bioresour. Technol. 102, 1234–1239 (2011)

    Article  Google Scholar 

  9. Nanda, S., Dalai, A.K., Kozinski, J.A.: Butanol and ethanol production from lignocellulosic feedstock: biomass pretreatment and bioconversion. Energy Sci. Eng. 2, 138–148 (2014)

    Article  Google Scholar 

  10. Kumar, P., Barrett, D.M., Delwiche, M.J., Stroeve, P.: Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind. Eng. Chem. Res. 48, 3713–3729 (2009)

    Article  Google Scholar 

  11. Modenbach, A.A., Nokes, S.E.: The use of high-solids loadings in biomass pretreatment-a review. Biotechnol. Bioeng. 109, 1430–1442 (2012)

    Article  Google Scholar 

  12. Kim, S., Kim, C.H.: Bioethanol production using the sequential acid/alkali-pretreated empty palm fruit bunch fiber. Renew. Energy. 54, 150–155 (2013)

    Article  Google Scholar 

  13. Teramoto, Y., Lee, S.H., Endo, T.: Cost reduction and feedstock diversity for sulfuric acid-free ethanol cooking of lignocellulosic biomass as a pretreatment to enzymatic saccharification. Bioresour. Technol. 100, 4783–4789 (2009)

    Article  Google Scholar 

  14. Duangwang, S., Ruengpeerakul, T., Cheirsilp, B., Yamsaengsung, R., Sangwichien, C.: Pilot-scale steam explosion for xylose production from oil palm empty fruit bunches and the use of xylose for ethanol production. Bioresour. Technol. 203, 252–258 (2016)

    Article  Google Scholar 

  15. AOAC.: Method 973.18, fiber (acid detergent) and lignin in animal feed. In: Official Methods of Analysis of AOAC International. 16th edn. ASA-SSA Inc., Arlington (1997)

    Google Scholar 

  16. Miller, G.L.: Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31, 426–428 (1959)

    Article  Google Scholar 

  17. Thamsee, T., Cheirsilp, B., Yamsaengsung, R., Ruengpeerakul, T., Choojit, S., Sangwichien, C.: Efficient of acid hydrolysis of oil palm empty fruit bunch residues for xylose and highly digestible cellulose pulp productions. Waste Biomass Valoriz. (2017).https://doi.org/10.1007/s12649-017-9965-2

    Google Scholar 

  18. Ghose, T.K.: Measurement of cellulase activities (recommendations of commission on biotechnology IUPAC). Pure Appl. Chem. 59, 257–268 (1987)

    Article  Google Scholar 

  19. Sternberg, D., Vijaykumar, P., Reese, E.T.: Cellobiase assay. Beta-glucosidase: microbial production and effect on enzymatic hydrolysis of cellulose. Can. J. Microbiol. 23, 139–147 (1977)

    Article  Google Scholar 

  20. Goh, C.S., Tan, H.T., Lee, K.T.: Pretreatment of oil palm frond using hot compressed water: an evaluation of compositional changes and pulp digestibility using severity factors. Bioresour. Technol. 110, 662–669 (2012)

    Article  Google Scholar 

  21. Hamzah, N.H.C., Markom, M., Harun, S., Hassan, O.: The effect of various pretreatment methods on empty fruit bunch for glucose production. Malays. J. Anal. Sci. 20, 1474–1480 (2016)

    Article  Google Scholar 

  22. Nazir, M.S., Wahjoedi, B.A., Yussof, A.W., Abdullah, M.A.: Eco-friendly extraction and characterization of cellulose from oil palm empty fruit bunches. Bioresources. 8, 2161–2172 (2013)

    Article  Google Scholar 

  23. Soom, R.M., Aziz, A.A., Hassan, W.H.W., Top, A.G.M.: Solid-state characteristics of microcrystalline cellulose from oil palm empty fruit bunch fibre. J. Oil Palm Res. 21, 613–620 (2009)

    Google Scholar 

  24. Fahma, F., Iwamoto, S., Hori, N., Iwata, T., Takemura, A.: Isolation, preparation, and characterization of nanofibers from oil palm empty-fruit-bunch (OPEFB). Cellulose. 17, 977–985 (2010)

    Article  Google Scholar 

  25. Lee, H.V., Hamid, S.B.A., Zain, S.K.: Conversion of lignocellulosic biomass to nanocellulose: structure and chemical process. Sci. World J. 2014, 1–20 (2014)

    Google Scholar 

  26. Richana, N., Winarti, C., Hidayat, T., Prastowo, B.: Hydrolysis of empty fruit bunches of palm oil (Elaeis Guineensis Jacq.) by chemical, physical, and enzymatic methods for bioethanol production. Int. J. Chem. Eng. App. 6, 422–426 (2015)

    Google Scholar 

  27. Ariffin, H., Hassan, M.A., Kalsom, M.S.U., Abdullah, N., Shirai, Y.: Effect of physical, chemical and thermal pretreatments on the enzymatic hydrolysis of oil palm empty fruit bunch (OPEFB). J. Trop. Agric. Food Sci. 36, 259–268 (2008)

    Google Scholar 

  28. Iberahim, N.I., Jahim, J.M., Harun, S., Nor, M.T.M., Hassan, O.: Sodium hydroxide pretreatment and enzymatic hydrolysis of oil palm mesocarp fiber. Int. J. Chem. Eng. App. 4, 101–105 (2013)

    Google Scholar 

  29. Keshwani, D.R., Cheng, J.J.: Microwave-based alkali pretreatment of switch grass and coastal bermuda grass for bioethanol production. Biotechnol. Prog. 26, 644–652 (2010)

    Article  Google Scholar 

  30. Sukri, S.S.M., Rahman, R.A., Illias, R.M., Yaakob, H.: Optimization of alkaline pretreatment conditions of oil palm fronds in improving the lignocelluloses contents for reducing sugar production. Rom. Biotechnol. Lett. 19, 9006–9018 (2014)

    Google Scholar 

  31. Aina, F.N., Jamaliah, J., Shuhaida, H.: Physiochemical changes and mass balance of raw and alkaline pretreated oil palm frond: pressed versus non pretreated oil palm. Int. J. App. Eng. Res. 11, 9886–9893 (2016)

    Google Scholar 

  32. Goh, C.S., Lee, K.T., Bhatia, S.: Hot compressed water pretreatment of oil palm fronds to enhance glucose recovery for production of second generation bio-ethanol. Bioresour. Technol. 101, 7362–7367 (2010)

    Article  Google Scholar 

  33. Kim, S., Park, J.M., Seo, J.W., Kim, C.H.: Sequential acid-/alkali-pretreatment of empty palm fruit bunch fiber. Bioresour. Technol. 109, 229–233 (2012)

    Article  Google Scholar 

  34. Prawitwong, P., Kosugi, A., Arai, T., Deng, L., Lee, K.C., Ibrahim, D., Murata, Y., Sulaiman, O., Hashim, R., Sudesh, K., Ibrahim, W.A.B., Saito, M., Mori, Y.: Efficient ethanol production from separated parenchyma and vascular bundle of oil palm trunk. Bioresour. Technol. 125, 37–42 (2012)

    Article  Google Scholar 

  35. Normah, A.M., Mohd Azemi, M.N., Simatupang, M.H., Manan Dos, A.: Extraction and characterization of oil palm starch. In: Third National Seminar on Utilization of Oil Palm Tree and Other Palms, p. 24. Malaysia, Kuala Lumpur (1994)

  36. Zhu, L., O’Dwyer, J.P., Chang, V.S., Granda, C.B., Holtzapple, M.T.: Structural features affecting biomass enzymatic digestibility. Bioresour. Technol. 99, 3817–3828 (2008)

    Article  Google Scholar 

  37. Taherzadeh, M.J., Karimi, K.: Pretreatment of lignocellulosic waster to improve ethanol and biogas production: a review. Int. J. Mol. Sci. 9, 1621–1651 (2008)

    Article  Google Scholar 

  38. Palamae, S., Dechatiwongse, P., Choorit, W., Chisti, Y., Prasertsan, P.: Cellulose and hemicellulose recovery from oil palm empty fruit bunch (EFB) fibers and production of sugars from the fibers. Carbohydr. Polym. 155, 491–497 (2017)

    Article  Google Scholar 

  39. Jung, Y.H., Kim, I.J., Kim, J.J., Oh, K.K., Han, J.I., Choi, I.G., Kim, K.H.: Ethanol production from oil palm trunks treated with aqueous ammonia and cellulase. Bioresour. Technol. 102, 7307–7312 (2011)

    Article  Google Scholar 

  40. Jung, Y.H., Kim, S., Yang, T.H., Lee, H.J., Seung, D., Park, Y.C., Seo, J.H., Choi, I.G., Kim, K.H.: Aqueous ammonia pretreatment, saccharification, and fermentation evaluation of oil palm fronds for ethanol production. Bioprocess Biosyst. Eng. 35, 1497–1503 (2012)

    Article  Google Scholar 

  41. Boonsawang, P., Subkaree, Y., Srinorakutara, T.: Ethanol production from palm pressed fiber by prehydrolysis prior to simultaneous saccharification and fermentation (SSF). Biomass Bioenergy 40, 127–132 (2012)

    Article  Google Scholar 

  42. Aziz, A.A., Husin, M., Mokhtar, A.: Preparation of cellulose from oil palm empty fruit bunches via ethanol digestion: effect of acid and alkali catalysts. J. Oil Palm Res. 14, 9–14 (2002)

    Google Scholar 

  43. Sun, Y., Cheng, J.: Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour. Technol. 83, 1–11 (2002)

    Article  Google Scholar 

  44. Feist, W.C., Baker, A.J., Tarkow, H.: Alkali requirements for improving digestibility of hardwoods by rumen micro-organisms. J. Anim. Sci. 30, 832–835 (1970)

    Article  Google Scholar 

  45. Choi, W.I., Park, J.Y., Lee, J.P., Oh, Y.K., Park, Y.C., Kim, J.S., Park, J.M., Kim, C.H., Lee, J.S.: Optimization of NaOH-catalyzed steam pretreatment of empty fruit bunch. Biotechnol. Biofuels 6, 170 (2013)

    Article  Google Scholar 

  46. Nor, N.A.M., Mustapha, W.A.W., Hassan, O.: Deep eutectic solvent (DES) as a pretreatment for oil palm empty fruit bunch (OPEFB) in sugar production. Proced. Chem. 18, 147–154 (2016)

    Article  Google Scholar 

  47. Tay, G.S., Zaim, J.M., Rozman, H.D.: Mechanical properties of polypropylene composite reinforced with oil palm empty fruit bunch pulp. J. Appl. Polym. Sci. 116, 1867–1872 (2010)

    Google Scholar 

  48. Barlianti, V., Dahnum, D., Hendarsyah, H., Abimanyu, H.: Effect of alkaline pretreatment on properties of lignocellulosic oil palm waste. Proced. Chem. 16, 195–201 (2015)

    Article  Google Scholar 

  49. Abdullah, M.A., Nazir, M.S., Raza, M.R., Wahjoedi, B.A., Yussof, A.W.: Autoclave and ultra-sonication treatments of oil palm empty fruit bunch fibers for cellulose extraction and its polypropylene composite properties. J. Clean. Prod. 126, 686–697 (2016)

    Article  Google Scholar 

  50. Yunus, R., Salleh, S.F., Abdullah, N., Biak, D.R.A.: Effect of ultrasonic pre-treatment on low temperature acid hydrolysis of oil palm empty fruit bunch. Bioresour. Technol. 101, 9792–9796 (2010)

    Article  Google Scholar 

  51. Triwahyuni, E., Abimayu, H., Cahyono, A., Cahyono, E.T., Sudiyani, Y.: Alkaline delignification of oil palm empty fruit bunch using black liquor from pretreatment. Proced. Chem. 16, 99–105 (2015)

    Article  Google Scholar 

  52. Hendriks, A.T.W.M., Zeeman, G.: Review: pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresour. Technol. 100, 10–18 (2009)

    Article  Google Scholar 

  53. Shamsudin, S., Shah, U.K.M., Zainudin, H., Aziz, S.A., Kamal, S.M.M., Shirai, Y., Hassan, M.A.: Effect of steam pretreatment on oil palm empty fruit bunch for the production of sugars. Biomass Bioenergy 36, 280–288 (2012)

    Article  Google Scholar 

  54. Martín-Sampedro, R., Eugenio, M.E., García, J.C., Lopez, F., Villar, J.C., Diaz, M.J.: Steam explosion and enzymatic pretreatments as an approach to improve the enzymatic hydrolysis of Eucalyptus globulus. Biomass Bioenergy 42, 97–106 (2012)

    Article  Google Scholar 

  55. Medina, J.D.C., Woiciechowski, A., Filho, A.Z., Nigam, P.S., Ramos, L.P., Soccol, C.R.: Steam explosion pretreatment of oil palm empty fruit bunches (EFB) using autocatalytic hydrolysis: a biorefinery approach. Bioresour. Technol. 199, 173–180 (2016)

    Article  Google Scholar 

  56. Ballesteros, I., Negro, M.J., Oliva, J.M., Cabañas, A., Manzanares, P., Ballesteros, M.: Ethanol production from steam-explosion pretreated wheat straw. Appl. Biochem. Biotechnol. 129–132, 496–508 (2006)

    Article  Google Scholar 

  57. Donaldson, L.A., Wong, K.K.Y., Mackie, K.L.: Ultrastructure of steam exploded wood. Wood Sci. Technol. 22, 103–114 (1988)

    Article  Google Scholar 

  58. Yang, B., Wyman, C.E.: Effect of xylan and lignin removal by batch and flow through pretreatment on the enzymatic digestibility of corn stover cellulose. Biotechnol. Bioeng. 86, 88–95 (2004)

    Article  Google Scholar 

  59. Martín-Sampedro, R., Eugenio, M.E., Revilla, E., Martín, J.A., Villar, J.C.: Integration of kraft pulping on a biorefinery by the addition of a steam explosion pretreatment. Bioresources. 6, 513–528 (2011)

    Google Scholar 

  60. Hassan, O., Ling, T.P., Maskat, M.Y., Illias, R.M., Badri, K., Jahim, J., Mahadi, N.M.: Optimization of pretreatments for the hydrolysis of oil palm empty fruit bunch fiber (EFBF) using enzyme mixtures. Biomass Bioener. 56, 137–146 (2013)

    Article  Google Scholar 

  61. Hanim, S.S., Noor, M.A.M., Rosma, A.: Fractionation of oil palm frond hemicelluloses by water or alkaline impregnation and steam explosion. Carbohydr. Polym. 115, 533–539 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Prince of Songkla University (PSU) Graduate School Research Support Funding. We gratefully thank the Department of Chemical Engineering, Faculty of Engineering, PSU for facilities and equipment. Also the PSU Research and Development Office (RDO) and Assoc. Prof. Seppo Karrila providing assistance in manuscript preparation. The second author received additional support from a Postdoctoral Fellowship by the Prince of Songkla University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chayanoot Sangwichien.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thamsee, T., Choojit, S., Cheirsilp, B. et al. Combination of Superheated Steam Explosion and Alkaline Autoclaving Pretreatment for Improvement of Enzymatic Digestibility of the Oil Palm Tree Residues as Alternative Sugar Sources. Waste Biomass Valor 10, 3009–3023 (2019). https://doi.org/10.1007/s12649-018-0292-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-018-0292-z

Keywords

Navigation