Skip to main content
Log in

Methamphetamine-Induced Neurotoxicity Disrupts Pharmacologically Evoked Dopamine Transients in the Dorsomedial and Dorsolateral Striatum

  • Original Article
  • Published:
Neurotoxicity Research Aims and scope Submit manuscript

Abstract

Phasic dopamine (DA) signaling, during which burst firing by DA neurons generates short-lived elevations in extracellular DA in terminal fields called DA transients, is implicated in reinforcement learning. Disrupted phasic DA signaling is proposed to link DA depletions and cognitive-behavioral impairment in methamphetamine (METH)-induced neurotoxicity. Here, we further investigated this disruption by assessing effects of METH pretreatment on DA transients elicited by a drug cocktail of raclopride, a D2 DA receptor antagonist, and nomifensine, an inhibitor of the dopamine transporter (DAT). One advantage of this approach is that pharmacological activation provides a large, high-quality data set of transients elicited by endogenous burst firing of DA neurons for analysis of regional differences and neurotoxicity. These pharmacologically evoked DA transients were measured in the dorsomedial (DM) and dorsolateral (DL) striatum of urethane-anesthetized rats by fast-scan cyclic voltammetry. Electrically evoked DA levels were also recorded to quantify DA release and uptake, and DAT binding was determined by means of autoradiography to index DA denervation. Pharmacologically evoked DA transients in intact animals exhibited a greater amplitude and frequency and shorter duration in the DM compared to the DL striatum, despite similar pre- and post-drug assessments of DA release and uptake in both sub-regions as determined from the electrically evoked DA signals. METH pretreatment reduced transient activity. The most prominent effect of METH pretreatment on transients across striatal sub-region was decreased amplitude, which mirrored decreased DAT binding and was accompanied by decreased DA release. Overall, these results identify marked intrastriatal differences in the activity of DA transients that appear independent of presynaptic mechanisms for DA release and uptake and further support disrupted phasic DA signaling mediated by decreased DA release in rats with METH-induced neurotoxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abercrombie ED, Bonatz AE, Zigmond MJ (1990) Effects of l-dopa on extracellular dopamine in striatum of normal and 6-hydroxydopamine-treated rats. Brain Res 525:36–44

    Article  CAS  PubMed  Google Scholar 

  • Aragona BJ, Cleaveland NA, Stuber GD, Day JJ, Carelli RM, Wightman RM (2008) Preferential enhancement of dopamine transmission within the nucleus accumbens shell by cocaine is attributable to a direct increase in phasic dopamine release events. J Neurosci 28:8821–8831

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Avelar AJ, Juliano SA, Garris PA (2013) Amphetamine augments vesicular dopamine release in the dorsal and ventral striatum through different mechanisms. J Neurochem 125:373–385

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bales JW, Wagner AK, Kline AE, Dixon CE (2009) Persistent cognitive dysfunction after traumatic brain injury: a dopamine hypothesis. Neurosci Biobehav Rev 33:981–1003

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bales JW, Kline AE, Wagner AK, Dixon CE (2010) Targeting dopamine in acute traumatic brain injury. Open Drug Discov J 2:119–128

    CAS  PubMed Central  PubMed  Google Scholar 

  • Barker-Haliski ML, Oldenburger K, Keefe KA (2012) Disruption of subcellular Arc/Arg 3.1 mRNA expression in striatal efferent neurons following partial monoamine loss induced by methamphetamine. J Neurochem 123:845–855

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bergstrom BP, Garris PA (2003) ‘Passive stabilization’ of striatal extracellular dopamine across the lesion spectrum encompassing the presymptomatic phase of Parkinson’s disease: a voltammetric study in the 6-OHDA-lesioned rat. J Neurochem 87:1224–1236

    Article  CAS  PubMed  Google Scholar 

  • Bergstrom BP, Sanberg SG, Andersson M, Mithyantha J, Carroll FI, Garris PA (2011) Functional reorganization of the presynaptic dopaminergic terminal in Parkinsonism. Neuroscience 193:310–322

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Boja JW, Mitchell WM, Patel A, Kopajtic TA, Carroll FI, Lewin AH, Abraham P, Kuhar MJ (1992) High-affinity binding of [125I]RTI-55 to dopamine and serotonin transporters in rat brain. Synapse 12:27–36

    Article  CAS  PubMed  Google Scholar 

  • Borland LM, Michael AC (2004) Voltammetric study of the control of striatal dopamine release by glutamate. J Neurochem 91:220–229

    Article  CAS  PubMed  Google Scholar 

  • Brown HD, McCutcheon JE, Cone JJ, Ragozzino ME, Roitman MF (2011) Primary food reward and reward-predictive stimuli evoke different patterns of phasic dopamine signaling throughout the striatum. Eur J Neurosci 34:1997–2006

    Article  PubMed Central  PubMed  Google Scholar 

  • Budygin EA, Phillips PE, Robinson DL, Kennedy AP, Gainetdinov RR, Wightman RM (2001) Effect of acute ethanol on striatal dopamine neurotransmission in ambulatory rats. J Pharmacol Exp Ther 297:27–34

    CAS  PubMed  Google Scholar 

  • Cass WA, Manning MW (1999) Recovery of presynaptic dopaminergic functioning in rats treated with neurotoxic doses of methamphetamine. J Neurosci 19:7653–7660

    CAS  PubMed  Google Scholar 

  • Chapman DE, Hanson GR, Kesner RP, Keefe KA (2001) Long-term changes in basal ganglia function after a neurotoxic regimen of methamphetamine. J Pharmacol Exp Ther 296:520–527

    CAS  PubMed  Google Scholar 

  • Cheer JF, Wassum KM, Heien ML, Phillips PE, Wightman RM (2004) Cannabinoids enhance subsecond dopamine release in the nucleus accumbens of awake rats. J Neurosci 24:4393–4400

    Article  CAS  PubMed  Google Scholar 

  • Cheer JF, Heien ML, Garris PA, Carelli RM, Wightman RM (2005) Simultaneous electrochemical and single-unit recordings in the nucleus accumbens reveal GABA-mediated responses: implications for intracranial self-stimulation. Proc Natl Acad Sci USA 102:19150–19155

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cheer JF, Wassum KM, Sombers LA, Heien ML, Ariansen JL, Aragona BJ, Phillips PE, Wightman RM (2007) Phasic dopamine release evoked by abused substances requires cannabinoid receptor activation. J Neurosci 27:791–795

    Article  CAS  PubMed  Google Scholar 

  • Cragg SJ, Hille CJ, Greenfield SA (2000) Dopamine release and uptake dynamics within nonhuman primate striatum in vitro. J Neurosci 20:8209–8217

    CAS  PubMed  Google Scholar 

  • Daberkow DP, Kesner RP, Keefe KA (2005) Relation between methamphetamine-induced monoamine depletions in the striatum and sequential motor learning. Pharmacol Biochem Behav 81:198–204

    Article  CAS  PubMed  Google Scholar 

  • Daberkow DP, Riedy MD, Kesner RP, Keefe KA (2007) Arc mRNA induction in striatal efferent neurons associated with response learning. Eur J Neurosci 26:228–241

    Article  CAS  PubMed  Google Scholar 

  • Daberkow DP, Riedy MD, Kesner RP, Keefe KA (2008) Effect of methamphetamine neurotoxicity on learning-induced Arc mRNA expression in identified striatal efferent neurons. Neurotox Res 14:307–315

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Daberkow DP, Brown HD, Bunner KD, Kraniotis SA, Doellman MA, Ragozzino ME, Garris PA, Roitman MF (2013) Amphetamine paradoxically augments exocytotic dopamine release and phasic dopamine signals. J Neurosci 33:452–463

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Everitt BJ, Robbins TW (2005) Neural systems of reinforcement for drug addiction: from actions to habits to compulsion. Nat Neurosci 8:1481–1489

    Article  CAS  PubMed  Google Scholar 

  • Fiorillo CD, Tobler PN, Schultz W (2003) Discrete coding of reward probability and uncertainty by dopamine neurons. Science 299:1898–1902

    Article  CAS  PubMed  Google Scholar 

  • Frank MJ, Seeberger LC, O’reilly RC (2004) By carrot or by stick: cognitive reinforcement learning in Parkinsonism. Science 306:1940–1943

    Article  CAS  PubMed  Google Scholar 

  • Garris PA, Wightman RM (1994) Different kinetics govern dopaminergic transmission in the amygdala, prefrontal cortex, and striatum: an in vivo voltammetric study. J Neurosci 14:442–450

    CAS  PubMed  Google Scholar 

  • Garris PA, Walker QD, Wightman RM (1997) Dopamine release and uptake rates both decrease in the partially denervated striatum in proportion to the loss of dopamine terminals. Brain Res 753:225–234

    Article  CAS  PubMed  Google Scholar 

  • Grace AA, Floresco SB, Goto Y, Lodge DJ (2007) Regulation of firing of dopaminergic neurons and control of goal-directed behaviors. Trends Neurosci 30:220–227

    Article  CAS  PubMed  Google Scholar 

  • Harden DG, Grace AA (1995) Activation of dopamine cell firing by repeated l-DOPA administration to dopamine-depleted rats: its potential role in mediating the therapeutic response to l-DOPA treatment. J Neurosci 15:6157–6166

    CAS  PubMed  Google Scholar 

  • Heien ML, Khan AS, Ariansen JL, Cheer JF, Phillips PE, Wassum KM, Wightman RM (2005) Real-time measurement of dopamine fluctuations after cocaine in the brain of behaving rats. Proc Natl Acad Sci USA 102:10023–10028

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hollerman JR, Grace AA (1990) The effects of dopamine-depleting brain lesions on the electrophysiological activity of rat substantia nigra dopamine neurons. Brain Res 533:203–212

    Article  CAS  PubMed  Google Scholar 

  • Howard CD, Keefe KA, Garris PA, Daberkow DP (2011) Methamphetamine neurotoxicity decreases phasic, but not tonic, dopaminergic signaling in the rat striatum. J Neurochem 118:668–676

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Howard CD, Daberkow DP, Ramsson ES, Keefe KA, Garris PA (2013a) Methamphetamine-induced neurotoxicity disrupts naturally occurring phasic dopamine signaling. Eur J Neurosci 38:2078–2088

    Article  PubMed  Google Scholar 

  • Howard CD, Pastuzyn ED, Barker-Haliski ML, Garris PA, Keefe KA (2013b) Phasic-like stimulation of the medial forebrain bundle augments striatal gene expression despite methamphetamine-induced partial dopamine denervation. J Neurochem 125:555–565

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Howe MW, Tierney PL, Sandberg SG, Phillips PE, Graybiel AM (2013) Prolonged dopamine signalling in striatum signals proximity and value of distant rewards. Nature 500:575–579

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hyland B, Reynolds J, Hay J, Perk C, Miller R (2002) Firing modes of midbrain dopamine cells in the freely moving rat. Neuroscience 114:475

    Article  CAS  PubMed  Google Scholar 

  • Izquierdo A, Belcher AM, Scott L, Cazares VA, Chen J, O’Dell SJ, Malvaez M, Wu T, Marshall JF (2010) Reversal-specific learning impairments after a binge regimen of methamphetamine in rats: possible involvement of striatal dopamine. Neuropsychopharmacology 35:505–514

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kelland MD, Chiodo LA, Freeman AS (1990) Anesthetic influences on the basal activity and pharmacological responsiveness of nigrostriatal dopamine neurons. Synapse 6:207–209

    Article  CAS  PubMed  Google Scholar 

  • Koulchitsky S, De BB, Quertemont E, Charlier C, Seutin V (2012) Differential effects of cocaine on dopamine neuron firing in awake and anesthetized rats. Neuropsychopharmacology 37:1559–1571

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lammel S, Hetzel A, Hackel O, Jones I, Liss B, Roeper J (2008) Unique properties of mesoprefrontal neurons within a dual mesocorticolimbic dopamine system. Neuron 57:760–773

    Article  CAS  PubMed  Google Scholar 

  • Loewinger GC, Beckert MV, Tejeda HA, Cheer JF (2012) Methamphetamine-induced dopamine terminal deficits in the nucleus accumbens are exacerbated by reward-associated cues and attenuated by CB1 receptor antagonism. Neuropharmacology 62:2192–2201

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Marshall JF, O’Dell SJ (2012) Methamphetamine influences on brain and behavior: unsafe at any speed? Trends Neurosci 35:536–545

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Michael D, Travis ER, Wightman RM (1998) Color images for fast-scan CV measurements in biological systems. Anal Chem 70:586A–592A

    Article  CAS  PubMed  Google Scholar 

  • Morita K, Morishima M, Sakai K, Kawaguchi Y (2012) Reinforcement learning: computing the temporal difference of values via distinct corticostriatal pathways. Trends Neurosci 35:457–467

    Article  CAS  PubMed  Google Scholar 

  • Nordahl TE, Salo R, Leamon M (2003) Neuropsychological effects of chronic methamphetamine use on neurotransmitters and cognition: a review. J Neuropsychiatry Clin Neurosci 15:317–325

    Article  CAS  PubMed  Google Scholar 

  • O’Dell SJ, Feinberg LM, Marshall JF (2011) A neurotoxic regimen of methamphetamine impairs novelty recognition as measured by a social odor-based task. Behav Brain Res 216:396–401

    Article  PubMed  Google Scholar 

  • Owesson-White CA, Roitman MF, Sombers LA, Belle AM, Keithley RB, Peele JL, Carelli RM, Wightman RM (2012) Sources contributing to the average extracellular concentration of dopamine in the nucleus accumbens. J Neurochem 121:252–262

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Park J, Aragona BJ, Kile BM, Carelli RM, Wightman RM (2010) In vivo voltammetric monitoring of catecholamine release in subterritories of the nucleus accumbens shell. Neuroscience 169:132–142

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Park J, Takmakov P, Wightman RM (2011) In vivo comparison of norepinephrine and dopamine release in rat brain by simultaneous measurements with fast-scan cyclic voltammetry. J Neurochem 119:932–944

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pastuzyn ED, Chapman DE, Wilcox KS, Keefe KA (2012) Altered learning and Arc-regulated consolidation of learning in striatum by methamphetamine-induced neurotoxicity. Neuropsychopharmacology 37:885–895

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Paxinos G, Watson C (1986) The rat brain in stereotaxic coordinates. Academic Press, New York

    Google Scholar 

  • Phillips PE, Stuber GD, Heien ML, Wightman RM, Carelli RM (2003) Subsecond dopamine release promotes cocaine seeking. Nature 422:614–618

    Article  CAS  PubMed  Google Scholar 

  • Robinson DL, Wightman RM (2004) Nomifensine amplifies subsecond dopamine signals in the ventral striatum of freely-moving rats. J Neurochem 90:894–903

    Article  CAS  PubMed  Google Scholar 

  • Robinson TE, Mocsary Z, Camp DM, Whishaw IQ (1994) Time course of recovery of extracellular dopamine following partial damage to the nigrostriatal dopamine system. J Neurosci 14:2687–2696

    CAS  PubMed  Google Scholar 

  • Robinson DL, Phillips PE, Budygin EA, Trafton BJ, Garris PA, Wightman RM (2001) Sub-second changes in accumbal dopamine during sexual behavior in male rats. NeuroReport 12:2549–2552

    Article  CAS  PubMed  Google Scholar 

  • Robinson DL, Heien ML, Wightman RM (2002) Frequency of dopamine concentration transients increases in dorsal and ventral striatum of male rats during introduction of conspecifics. J Neurosci 22:10477–10486

    CAS  PubMed  Google Scholar 

  • Robinson DL, Howard EC, McConnell S, Gonzales RA, Wightman RM (2009) Disparity between tonic and phasic ethanol-induced dopamine increases in the nucleus accumbens of rats. Alcohol Clin Exp Res 33:1187–1196

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sandberg SG, Phillips PEM (2009) Phasic dopaminergic signaling: implications for Parkinson’s disease. In: Tseng KY (ed) Cortico-subcortical dynamics in Parkinson’s disease. Humana Press, New York, pp 37–53

    Google Scholar 

  • Schonberg T, O’Doherty JP, Joel D, Inzelberg R, Segev Y, Daw ND (2010) Selective impairment of prediction error signaling in human dorsolateral but not ventral striatum in Parkinson’s disease patients: evidence from a model-based fMRI study. Neuroimage 49:772–781

    Article  PubMed  Google Scholar 

  • Schultz W (1998) Predictive reward signal of dopamine neurons. J Neurophysiol 80:1–27

    CAS  PubMed  Google Scholar 

  • Schultz W (2007) Behavioral dopamine signals. Trends Neurosci 30:203–210

    Article  CAS  PubMed  Google Scholar 

  • Scott JC, Woods SP, Matt GE, Meyer RA, Heaton RK, Atkinson JH, Grant I (2007) Neurocognitive effects of methamphetamine: a critical review and meta-analysis. Neuropsychol Rev 17:275–297

    Article  PubMed  Google Scholar 

  • Shi WX, Pun CL, Zhang XX, Jones MD, Bunney BS (2000) Dual effects of d-amphetamine on dopamine neurons mediated by dopamine and nondopamine receptors. J Neurosci 20:3504–3511

    CAS  PubMed  Google Scholar 

  • Shi WX, Pun CL, Zhou Y (2004) Psychostimulants induce low-frequency oscillations in the firing activity of dopamine neurons. Neuropsychopharmacology 29:2160–2167

    Article  CAS  PubMed  Google Scholar 

  • Simon SL, Domier C, Carnell J, Brethen P, Rawson R, Ling W (2000) Cognitive impairment in individuals currently using methamphetamine. Am J Addict 9:222–231

    Article  CAS  PubMed  Google Scholar 

  • Sombers LA, Beyene M, Carelli RM, Wightman RM (2009) Synaptic overflow of dopamine in the nucleus accumbens arises from neuronal activity in the ventral tegmental area. J Neurosci 29:1735–1742

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Son JH, Latimer C, Keefe KA (2011) Impaired formation of stimulus-response, but not action-outcome, associations in rats with methamphetamine-induced neurotoxicity. Neuropsychopharmacology 36:2441–2451

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Son JH, Kuhn J, Keefe KA (2013) Perseverative behavior in rats with methamphetamine-induced neurotoxicity. Neuropharmacology 67:95–103

    Article  CAS  PubMed  Google Scholar 

  • Stuber GD, Roitman MF, Phillips PE, Carelli RM, Wightman RM (2005a) Rapid dopamine signaling in the nucleus accumbens during contingent and noncontingent cocaine administration. Neuropsychopharmacology 30:853–863

    Article  CAS  PubMed  Google Scholar 

  • Stuber GD, Wightman RM, Carelli RM (2005b) Extinction of cocaine self-administration reveals functionally and temporally distinct dopaminergic signals in the nucleus accumbens. Neuron 46:661–669

    Article  CAS  PubMed  Google Scholar 

  • Venton BJ, Wightman RM (2007) Pharmacologically induced, subsecond dopamine transients in the caudate-putamen of the anesthetized rat. Synapse 61:37–39

    Article  CAS  PubMed  Google Scholar 

  • Venton BJ, Zhang H, Garris PA, Phillips PE, Sulzer D, Wightman RM (2003) Real-time decoding of dopamine concentration changes in the caudate-putamen during tonic and phasic firing. J Neurochem 87:1284–1295

    Article  CAS  PubMed  Google Scholar 

  • Volkow ND, Chang L, Wang GJ, Fowler JS, Leonido-Yee M, Franceschi D, Sedler MJ, Gatley SJ, Hitzemann R, Ding YS, Logan J, Wong C, Miller EN (2001) Association of dopamine transporter reduction with psychomotor impairment in methamphetamine abusers. Am J Psychiatry 158:377–382

    Article  CAS  PubMed  Google Scholar 

  • Wagner AK, Sokoloski JE, Ren D, Chen X, Khan AS, Zafonte RD, Michael AC, Dixon CE (2005) Controlled cortical impact injury affects dopaminergic transmission in the rat striatum. J Neurochem 95:457–465

    Article  CAS  PubMed  Google Scholar 

  • Wagner AK, Drewencki LL, Chen X, Santos FR, Khan AS, Harun R, Torres GE, Michael AC, Dixon CE (2009a) Chronic methylphenidate treatment enhances striatal dopamine neurotransmission after experimental traumatic brain injury. J Neurochem 108:986–997

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wagner AK, Sokoloski JE, Chen X, Harun R, Clossin DP, Khan AS, Andes-Koback M, Michael AC, Dixon CE (2009b) Controlled cortical impact injury influences methylphenidate-induced changes in striatal dopamine neurotransmission. J Neurochem 110:801–810

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wassum KM, Ostlund SB, Loewinger GC, Maidment NT (2013) Phasic mesolimbic dopamine release tracks reward seeking during expression of pavlovian-to-instrumental transfer. Biol Psychiatry 73:747–755

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wiecki TV, Frank MJ (2010) Neurocomputational models of motor and cognitive deficits in Parkinson’s disease. Prog Brain Res 183:275–297

    Article  CAS  PubMed  Google Scholar 

  • Wightman RM, Amatore C, Engstrom RC, Hale PD, Kristensen EW, Kuhr WG, May LJ (1988) Real-time characterization of dopamine overflow and uptake in the rat striatum. Neuroscience 25:513–523

    Article  CAS  PubMed  Google Scholar 

  • Wightman RM, Heien ML, Wassum KM, Sombers LA, Aragona BJ, Khan AS, Ariansen JL, Cheer JF, Phillips PE, Carelli RM (2007) Dopamine release is heterogeneous within microenvironments of the rat nucleus accumbens. Eur J Neurosci 26:2046–2054

    Article  PubMed  Google Scholar 

  • Willuhn I, Burgeno LM, Everitt BJ, Phillips PE (2012) Hierarchical recruitment of phasic dopamine signaling in the striatum during the progression of cocaine use. Proc Natl Acad Sci USA 109(50):20703–20708

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wu Q, Reith ME, Kuhar MJ, Carroll FI, Garris PA (2001a) Preferential increases in nucleus accumbens dopamine after systemic cocaine administration are caused by unique characteristics of dopamine neurotransmission. J Neurosci 21:6338–6347

    CAS  PubMed  Google Scholar 

  • Wu Q, Reith ME, Wightman RM, Kawagoe KT, Garris PA (2001b) Determination of release and uptake parameters from electrically evoked dopamine dynamics measured by real-time voltammetry. J Neurosci Methods 112:119–133

    Article  CAS  PubMed  Google Scholar 

  • Wu Q, Reith ME, Walker QD, Kuhn CM, Carroll FI, Garris PA (2002) Concurrent autoreceptor-mediated control of dopamine release and uptake during neurotransmission: an in vivo voltammetric study. J Neurosci 22:6272–6281

    CAS  PubMed  Google Scholar 

  • Yin HH, Knowlton BJ (2006) The role of the basal ganglia in habit formation. Nat Rev Neurosci 7:464–476

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Doyon WM, Clark JJ, Phillips PE, Dani JA (2009a) Controls of tonic and phasic dopamine transmission in the dorsal and ventral striatum. Mol Pharmacol 76:396–404

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang T, Zhang L, Liang Y, Siapas AG, Zhou FM, Dani JA (2009b) Dopamine signaling differences in the nucleus accumbens and dorsal striatum exploited by nicotine. J Neurosci 29:4035–4043

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This research was funded by National Institutes of Health grant DA 024036 (KAK and PAG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul A. Garris.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Robinson, J.D., Howard, C.D., Pastuzyn, E.D. et al. Methamphetamine-Induced Neurotoxicity Disrupts Pharmacologically Evoked Dopamine Transients in the Dorsomedial and Dorsolateral Striatum. Neurotox Res 26, 152–167 (2014). https://doi.org/10.1007/s12640-014-9459-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12640-014-9459-y

Keywords

Navigation