Skip to main content
Log in

Excitotoxicity Through NMDA Receptors Mediates Cerebellar Granule Neuron Apoptosis Induced by Prion Protein 90-231 Fragment

  • Original Article
  • Published:
Neurotoxicity Research Aims and scope Submit manuscript

Abstract

Prion diseases recognize, as a unique molecular trait, the misfolding of CNS-enriched prion protein (PrPC) into an aberrant isoform (PrPSc). In this work, we characterize the in vitro toxicity of amino-terminally truncated recombinant PrP fragment (amino acids 90-231, PrP90-231), on rat cerebellar granule neurons (CGN), focusing on glutamatergic receptor activation and Ca2+ homeostasis impairment. This recombinant fragment assumes a toxic conformation (PrP90-231TOX) after controlled thermal denaturation (1 h at 53 °C) acquiring structural characteristics identified in PrPSc (enrichment in β-structures, increased hydrophobicity, partial resistance to proteinase K, and aggregation in amyloid fibrils). By annexin-V binding assay, and evaluation of the percentage of fragmented and condensed nuclei, we show that treatment with PrP90-231TOX, used in pre-fibrillar aggregation state, induces CGN apoptosis. This effect was associated with a delayed, but sustained elevation of [Ca2+]i. Both CGN apoptosis and [Ca2+]i increase were not observed using PrP90-231 in PrPC-like conformation. PrP90-231TOX effects were significantly reduced in the presence of ionotropic glutamate receptor antagonists. In particular, CGN apoptosis and [Ca2+]i increase were largely reduced, although not fully abolished, by pre-treatment with the NMDA antagonists APV and memantine, while the AMPA antagonist CNQX produced a lower, although still significant, effect. In conclusion, we report that CGN apoptosis induced by PrP90-231TOX correlates with a sustained elevation of [Ca2+]i mediated by the activation of NMDA and AMPA receptors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aguzzi A, Polymenidou M (2004) Mammalian prion biology: one century of evolving concepts. Cell 116(2):313–327

    Article  PubMed  CAS  Google Scholar 

  • Alberdi E, Sanchez-Gomez MV, Cavaliere F, Perez-Samartin A, Zugaza JL, Trullas R, Domercq M, Matute C (2010) Amyloid beta oligomers induce Ca2+ dysregulation and neuronal death through activation of ionotropic glutamate receptors. Cell Calcium 47(3):264–272

    Article  PubMed  CAS  Google Scholar 

  • Bajetto A, Bonavia R, Barbero S, Piccioli P, Costa A, Florio T, Schettini G (1999) Glial and neuronal cells express functional chemokine receptor CXCR4 and its natural ligand stromal cell-derived factor 1. J Neurochem 73(6):2348–2357

    Article  PubMed  CAS  Google Scholar 

  • Baskakov IV, Legname G, Baldwin MA, Prusiner SB, Cohen FE (2002) Pathway complexity of prion protein assembly into amyloid. J Biol Chem 277(24):21140–21148

    Article  PubMed  CAS  Google Scholar 

  • Bate C, Reid S, Williams A (2001) Killing of prion-damaged neurones by microglia. Neuroreport 12(11):2589–2594

    Article  PubMed  CAS  Google Scholar 

  • Bate C, Salmona M, Diomede L, Williams A (2004) Squalestatin cures prion-infected neurons and protects against prion neurotoxicity. J Biol Chem 279(15):14983–14990

    Article  PubMed  CAS  Google Scholar 

  • Bezprozvanny I, Mattson MP (2008) Neuronal calcium mishandling and the pathogenesis of Alzheimer’s disease. Trends Neurosci 31(9):454–463

    Article  PubMed  CAS  Google Scholar 

  • Bi X, Gall CM, Zhou J, Lynch G (2002) Uptake and pathogenic effects of amyloid beta peptide 1–42 are enhanced by integrin antagonists and blocked by NMDA receptor antagonists. Neuroscience 112(4):827–840

    Article  PubMed  CAS  Google Scholar 

  • Biasini E, Turnbaugh JA, Unterberger U, Harris DA (2012) Prion protein at the crossroads of physiology and disease. Trends Neurosci 35(2):92–103

    Article  PubMed  CAS  Google Scholar 

  • Bounhar Y, Zhang Y, Goodyer CG, LeBlanc A (2001) Prion protein protects human neurons against Bax-mediated apoptosis. J Biol Chem 276(42):39145–39149

    Article  PubMed  CAS  Google Scholar 

  • Bracalello A, Santopietro V, Vassalli M, Marletta G, Del Gaudio R, Bochicchio B, Pepe A (2011) Design and production of a chimeric resilin-, elastin-, and collagen-like engineered polypeptide. Biomacromolecules 12(8):2957–2965

    Article  PubMed  CAS  Google Scholar 

  • Brown DR, Schulz-Schaeffer WJ, Schmidt B, Kretzschmar HA (1997) Prion protein-deficient cells show altered response to oxidative stress due to decreased SOD-1 activity. Exp Neurol 146(1):104–112

    Article  PubMed  CAS  Google Scholar 

  • Bucciantini M, Giannoni E, Chiti F, Baroni F, Formigli L, Zurdo J, Taddei N, Ramponi G, Dobson CM, Stefani M (2002) Inherent toxicity of aggregates implies a common mechanism for protein misfolding diseases. Nature 416(6880):507–511

    Article  PubMed  CAS  Google Scholar 

  • Bucciantini M, Calloni G, Chiti F, Formigli L, Nosi D, Dobson CM, Stefani M (2004) Prefibrillar amyloid protein aggregates share common features of cytotoxicity. J Biol Chem 279(30):31374–31382

    Article  PubMed  CAS  Google Scholar 

  • Castilla J, Hetz C, Soto C (2004) Molecular mechanisms of neurotoxicity of pathological prion protein. Curr Mol Med 4(4):397–403

    Article  PubMed  CAS  Google Scholar 

  • Caudle WM, Zhang J (2009) Glutamate, excitotoxicity, and programmed cell death in Parkinson disease. Exp Neurol 220(2):230–233

    Article  PubMed  CAS  Google Scholar 

  • Chabry J, Ratsimanohatra C, Sponne I, Elena PP, Vincent JP, Pillot T (2003) In vivo and in vitro neurotoxicity of the human prion protein (PrP) fragment P118–135 independently of PrP expression. J Neurosci 23(2):462–469

    PubMed  CAS  Google Scholar 

  • Chen SG, Teplow DB, Parchi P, Teller JK, Gambetti P, Autilio-Gambetti L (1995) Truncated forms of the human prion protein in normal brain and in prion diseases. J Biol Chem 270(32):19173–19180

    Article  PubMed  CAS  Google Scholar 

  • Chiesa R, Harris DA (2001) Prion diseases: what is the neurotoxic molecule? Neurobiol Dis 8(5):743–763

    Article  PubMed  CAS  Google Scholar 

  • Chiovitti K, Corsaro A, Thellung S, Villa V, Paludi D, D’Arrigo C, Russo C, Perico A, Ianieri A, Di Cola D, Vergara A, Aceto A, Florio T (2007) Intracellular accumulation of a mild-denatured monomer of the human PrP fragment 90–231, as possible mechanism of its neurotoxic effects. J Neurochem 103(6):2597–2609

    PubMed  CAS  Google Scholar 

  • Ciccotosto GD, Cappai R, White AR (2008) Neurotoxicity of prion peptides on cultured cerebellar neurons. Methods Mol Biol 459:83–96

    Article  PubMed  CAS  Google Scholar 

  • Collinge J, Whittington MA, Sidle KC, Smith CJ, Palmer MS, Clarke AR, Jefferys JG (1994) Prion protein is necessary for normal synaptic function. Nature 370(6487):295–297

    Article  PubMed  CAS  Google Scholar 

  • Corsaro A, Thellung S, Russo C, Villa V, Arena S, D’Adamo MC, Paludi D, Rossi Principe D, Damonte G, Benatti U, Aceto A, Tagliavini F, Schettini G, Florio T (2002) Expression in E. coli and purification of recombinant fragments of wild type and mutant human prion protein. Neurochem Int 41(1):55–63

    Article  PubMed  CAS  Google Scholar 

  • Corsaro A, Paludi D, Villa V, D’Arrigo C, Chiovitti K, Thellung S, Russo C, Di Cola D, Ballerini P, Patrone E, Schettini G, Aceto A, Florio T (2006) Conformation dependent pro-apoptotic activity of the recombinant human prion protein fragment 90–231. Int J Immunopathol Pharmacol 19(2):339–356

    PubMed  CAS  Google Scholar 

  • Corsaro A, Thellung S, Chiovitti K, Villa V, Simi A, Raggi F, Paludi D, Russo C, Aceto A, Florio T (2009) Dual modulation of ERK1/2 and p38 MAP kinase activities induced by minocycline reverses the neurotoxic effects of the prion protein fragment 90–231. Neurotox Res 15(2):138–154

    Article  PubMed  CAS  Google Scholar 

  • Corsaro A, Thellung S, Bucciarelli T, Scotti L, Chiovitti K, Villa V, D’Arrigo C, Aceto A, Florio T (2011) High hydrophobic amino acid exposure is responsible of the neurotoxic effects induced by E200 K or D202 N disease-related mutations of the human prion protein. Int J Biochem Cell Biol 43(3):372–382

    Article  PubMed  CAS  Google Scholar 

  • Corsaro A, Thellung S, Villa V, Nizzari M, Aceto A, Florio T (2012) Recombinant human prion protein fragment 90–231, a useful model to study prion neurotoxicity. OMICS 16(1–2):50–59

    Article  PubMed  CAS  Google Scholar 

  • Demuro A, Mina E, Kayed R, Milton SC, Parker I, Glabe CG (2005) Calcium dysregulation and membrane disruption as a ubiquitous neurotoxic mechanism of soluble amyloid oligomers. J Biol Chem 280(17):17294–17300

    Article  PubMed  CAS  Google Scholar 

  • Faucheux BA, Privat N, Brandel JP, Sazdovitch V, Laplanche JL, Maurage CA, Hauw JJ, Haik S (2009) Loss of cerebellar granule neurons is associated with punctate but not with large focal deposits of prion protein in Creutzfeldt–Jakob disease. J Neuropathol Exp Neurol 68(8):892–901

    Article  PubMed  CAS  Google Scholar 

  • Florio T, Grimaldi M, Scorziello A, Salmona M, Bugiani O, Tagliavini F, Forloni G, Schettini G (1996) Intracellular calcium rise through L-type calcium channels, as molecular mechanism for prion protein fragment 106–126-induced astroglial proliferation. Biochem Biophys Res Commun 228(2):397–405

    Article  PubMed  CAS  Google Scholar 

  • Florio T, Thellung S, Amico C, Robello M, Salmona M, Bugiani O, Tagliavini F, Forloni G, Schettini G (1998) Prion protein fragment 106–126 induces apoptotic cell death and impairment of L-type voltage-sensitive calcium channel activity in the GH3 cell line. J Neurosci Res 54(3):341–352

    Article  PubMed  CAS  Google Scholar 

  • Florio T, Paludi D, Villa V, Principe DR, Corsaro A, Millo E, Damonte G, D’Arrigo C, Russo C, Schettini G, Aceto A (2003) Contribution of two conserved glycine residues to fibrillogenesis of the 106–126 prion protein fragment. Evidence that a soluble variant of the 106–126 peptide is neurotoxic. J Neurochem 85(1):62–72

    Article  PubMed  CAS  Google Scholar 

  • Forloni G, Angeretti N, Chiesa R, Monzani E, Salmona M, Bugiani O, Tagliavini F (1993) Neurotoxicity of a prion protein fragment. Nature 362(6420):543–546

    Article  PubMed  CAS  Google Scholar 

  • Gatta E, Cupello A, Pellistri F, Robello M (2009) GABA(A) receptors of cerebellar granule cells in culture: explanation of overall insensitivity to ethanol. Neuroscience 162(4):1187–1191

    Article  PubMed  CAS  Google Scholar 

  • Giese A, Brown DR, Groschup MH, Feldmann C, Haist I, Kretzschmar HA (1998) Role of microglia in neuronal cell death in prion disease. Brain Pathol (Zurich, Switzerland) 8(3):449–457

    Article  CAS  Google Scholar 

  • Hafiz FB, Brown DR (2000) A model for the mechanism of astrogliosis in prion disease. Mol Cell Neurosci 16(3):221–232

    Article  PubMed  CAS  Google Scholar 

  • James TL, Liu H, Ulyanov NB, Farr-Jones S, Zhang H, Donne DG, Kaneko K, Groth D, Mehlhorn I, Prusiner SB, Cohen FE (1997) Solution structure of a 142-residue recombinant prion protein corresponding to the infectious fragment of the scrapie isoform. Proc Natl Acad Sci USA 94(19):10086–10091

    Article  PubMed  CAS  Google Scholar 

  • Kelly BL, Ferreira A (2006) Beta-amyloid-induced dynamin 1 degradation is mediated by N-methyl-d-aspartate receptors in hippocampal neurons. J Biol Chem 281(38):28079–28089

    Article  PubMed  CAS  Google Scholar 

  • Kourie JI, Culverson A (2000) Prion peptide fragment PrP[106-126] forms distinct cation channel types. J Neurosci Res 62(1):120–133

    Article  PubMed  CAS  Google Scholar 

  • Legname G, Baskakov IV, Nguyen HO, Riesner D, Cohen FE, DeArmond SJ, Prusiner SB (2004) Synthetic mammalian prions. Science (New York, NY) 305(5684):673–676

    Article  CAS  Google Scholar 

  • Lin MC, Mirzabekov T, Kagan BL (1997) Channel formation by a neurotoxic prion protein fragment. J Biol Chem 272(1):44–47

    Article  PubMed  CAS  Google Scholar 

  • Mallucci G, Dickinson A, Linehan J, Klohn PC, Brandner S, Collinge J (2003) Depleting neuronal PrP in prion infection prevents disease and reverses spongiosis. Science (New York, NY) 302(5646):871–874

    Article  CAS  Google Scholar 

  • Marella M, Chabry J (2004) Neurons and astrocytes respond to prion infection by inducing microglia recruitment. J Neurosci 24(3):620–627

    Article  PubMed  CAS  Google Scholar 

  • Mattson MP, Cheng B, Davis D, Bryant K, Lieberburg I, Rydel RE (1992) Beta-amyloid peptides destabilize calcium homeostasis and render human cortical neurons vulnerable to excitotoxicity. J Neurosci 12(2):376–389

    PubMed  CAS  Google Scholar 

  • Muller WE, Ushijima H, Schroder HC, Forrest JM, Schatton WF, Rytik PG, Heffner-Lauc M (1993) Cytoprotective effect of NMDA receptor antagonists on prion protein (PrionSc)-induced toxicity in rat cortical cell cultures. Eur J Pharmacol 246(3):261–267

    Article  PubMed  CAS  Google Scholar 

  • Novitskaya V, Bocharova OV, Bronstein I, Baskakov IV (2006) Amyloid fibrils of mammalian prion protein are highly toxic to cultured cells and primary neurons. J Biol Chem 281(19):13828–13836

    Article  PubMed  CAS  Google Scholar 

  • Paulis D, Maras B, Schinina ME, di Francesco L, Principe S, Galeno R, Abdel-Haq H, Cardone F, Florio T, Pocchiari M, Mazzanti M (2011) The pathological prion protein forms ionic conductance in lipid bilayer. Neurochem Int 59(2):168–174

    Article  PubMed  CAS  Google Scholar 

  • Peggion C, Bertoli A, Sorgato MC (2011) Possible role for Ca2+ in the pathophysiology of the prion protein? Biofactors (Oxford, England) 37(3):241–249

    Article  CAS  Google Scholar 

  • Pellistri F, Bucciantini M, Relini A, Nosi D, Gliozzi A, Robello M, Stefani M (2008) Nonspecific interaction of prefibrillar amyloid aggregates with glutamatergic receptors results in Ca2+ increase in primary neuronal cells. J Biol Chem 283(44):29950–29960

    Article  PubMed  CAS  Google Scholar 

  • Post K, Brown DR, Groschup M, Kretzschmar HA, Riesner D (2000) Neurotoxicity but not infectivity of prion proteins can be induced reversibly in vitro. Arch Virol 16:265–273

    Google Scholar 

  • Prusiner SB (1998) Prions. Proc Natl Acad Sci USA 95(23):13363–13383

    Article  PubMed  CAS  Google Scholar 

  • Rambold AS, Muller V, Ron U, Ben-Tal N, Winklhofer KF, Tatzelt J (2008) Stress-protective signalling of prion protein is corrupted by scrapie prions. EMBO J 27(14):1974–1984

    Article  PubMed  CAS  Google Scholar 

  • Sakaguchi S, Katamine S, Nishida N, Moriuchi R, Shigematsu K, Sugimoto T, Nakatani A, Kataoka Y, Houtani T, Shirabe S, Okada H, Hasegawa S, Miyamoto T, Noda T (1996) Loss of cerebellar Purkinje cells in aged mice homozygous for a disrupted PrP gene. Nature 380(6574):528–531

    Article  PubMed  CAS  Google Scholar 

  • Salmona M, Forloni G, Diomede L, Algeri M, De Gioia L, Angeretti N, Giaccone G, Tagliavini F, Bugiani O (1997) A neurotoxic and gliotrophic fragment of the prion protein increases plasma membrane microviscosity. Neurobiol Dis 4(1):47–57

    Article  PubMed  CAS  Google Scholar 

  • Salmona M, Morbin M, Massignan T, Colombo L, Mazzoleni G, Capobianco R, Diomede L, Thaler F, Mollica L, Musco G, Kourie JJ, Bugiani O, Sharma D, Inouye H, Kirschner DA, Forloni G, Tagliavini F (2003) Structural properties of Gerstmann–Straussler–Scheinker disease amyloid protein. J Biol Chem 278(48):48146–48153

    Article  PubMed  CAS  Google Scholar 

  • Sandberg MK, Al-Doujaily H, Sharps B, Clarke AR, Collinge J (2011) Prion propagation and toxicity in vivo occur in two distinct mechanistic phases. Nature 470(7335):540–542

    Article  PubMed  CAS  Google Scholar 

  • Scallet AC, Ye X (1997) Excitotoxic mechanisms of neurodegeneration in transmissible spongiform encephalopathies. Ann N Y Acad Sci 825:194–205

    Article  PubMed  CAS  Google Scholar 

  • Scorziello A, Meucci O, Florio T, Fattore M, Forloni G, Salmona M, Schettini G (1996) Beta 25–35 alters calcium homeostasis and induces neurotoxicity in cerebellar granule cells. J Neurochem 66(5):1995–2003

    Article  PubMed  CAS  Google Scholar 

  • Simoneau S, Rezaei H, Sales N, Kaiser-Schulz G, Lefebvre-Roque M, Vidal C, Fournier JG, Comte J, Wopfner F, Grosclaude J, Schatzl H, Lasmezas CI (2007) In vitro and in vivo neurotoxicity of prion protein oligomers. PLoS Pathog 3(8):e125

    Article  PubMed  Google Scholar 

  • Song MS, Rauw G, Baker GB, Kar S (2008) Memantine protects rat cortical cultured neurons against beta-amyloid-induced toxicity by attenuating tau phosphorylation. Eur J Neurosci 28(10):1989–2002

    Article  PubMed  CAS  Google Scholar 

  • Swietnicki W, Petersen R, Gambetti P, Surewicz WK (1997) pH-dependent stability and conformation of the recombinant human prion protein PrP(90–231). J Biol Chem 272(44):27517–27520

    Article  PubMed  CAS  Google Scholar 

  • Texido L, Martin-Satue M, Alberdi E, Solsona C, Matute C (2011) Amyloid beta peptide oligomers directly activate NMDA receptors. Cell Calcium 49(3):184–190

    Article  PubMed  CAS  Google Scholar 

  • Thellung S, Florio T, Villa V, Corsaro A, Arena S, Amico C, Robello M, Salmona M, Forloni G, Bugiani O, Tagliavini F, Schettini G (2000) Apoptotic cell death and impairment of L-type voltage-sensitive calcium channel activity in rat cerebellar granule cells treated with the prion protein fragment 106–126. Neurobiol Dis 7(4):299–309

    Article  PubMed  CAS  Google Scholar 

  • Thellung S, Villa V, Corsaro A, Arena S, Millo E, Damonte G, Benatti U, Tagliavini F, Florio T, Schettini G (2002) p38 MAP kinase mediates the cell death induced by PrP106-126 in the SH-SY5Y neuroblastoma cells. Neurobiol Dis 9(1):69–81

    Article  PubMed  CAS  Google Scholar 

  • Thellung S, Villa V, Corsaro A, Pellistri F, Venezia V, Russo C, Aceto A, Robello M, Florio T (2007) ERK1/2 and p38 MAP kinases control prion protein fragment 90–231-induced astrocyte proliferation and microglia activation. Glia 55(14):1469–1485

    Article  PubMed  Google Scholar 

  • Thellung S, Corsaro A, Villa V, Simi A, Vella S, Pagano A, Florio T (2011) Human PrP90-231-induced cell death is associated with intracellular accumulation of insoluble and protease-resistant macroaggregates and lysosomal dysfunction. Cell Death Dis 2:e138

    Article  PubMed  CAS  Google Scholar 

  • Tremblay R, Chakravarthy B, Hewitt K, Tauskela J, Morley P, Atkinson T, Durkin JP (2000) Transient NMDA receptor inactivation provides long-term protection to cultured cortical neurons from a variety of death signals. J Neurosci 20(19):7183–7192

    PubMed  CAS  Google Scholar 

  • Van Den Bosch L, Van Damme P, Bogaert E, Robberecht W (2006) The role of excitotoxicity in the pathogenesis of amyotrophic lateral sclerosis. Biochim Biophys Acta 1762(11–12):1068–1082

    Google Scholar 

  • Villa V, Corsaro A, Thellung S, Paludi D, Chiovitti K, Venezia V, Nizzari M, Russo C, Schettini G, Aceto A, Florio T (2006) Characterization of the proapoptotic intracellular mechanisms induced by a toxic conformer of the recombinant human prion protein fragment 90–231. Ann N Y Acad Sci 1090:276–291

    Article  PubMed  CAS  Google Scholar 

  • Villa V, Tonelli M, Thellung S, Corsaro A, Tasso B, Novelli F, Canu C, Pino A, Chiovitti K, Paludi D, Russo C, Sparatore A, Aceto A, Boido V, Sparatore F, Florio T (2011) Efficacy of novel acridine derivatives in the inhibition of hPrP90-231 prion protein fragment toxicity. Neurotox Res 19(4):556–574

    Article  PubMed  CAS  Google Scholar 

  • You H, Tsutsui S, Hameed S, Kannanayakal TJ, Chen L, Xia P, Engbers JD, Lipton SA, Stys PK, Zamponi GW (2012) Abeta neurotoxicity depends on interactions between copper ions, prion protein, and N-methyl-d-aspartate receptors. Proc Natl Acad Sci USA 109(5):1737–1742

    Article  PubMed  CAS  Google Scholar 

  • Zou WQ, Capellari S, Parchi P, Sy MS, Gambetti P, Chen SG (2003) Identification of novel proteinase K-resistant C-terminal fragments of PrP in Creutzfeldt–Jakob disease. J Biol Chem 278(42):40429–40436

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study has been supported by grants from Italian Ministry of University and Research (MIUR-PRIN 2008, and Accordi di Programma FIRB, Project No. RBAP11HSZS, 2011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tullio Florio.

Additional information

Stefano Thellung, Elena Gatta and Francesca Pellistri contributed equally to this study.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thellung, S., Gatta, E., Pellistri, F. et al. Excitotoxicity Through NMDA Receptors Mediates Cerebellar Granule Neuron Apoptosis Induced by Prion Protein 90-231 Fragment. Neurotox Res 23, 301–314 (2013). https://doi.org/10.1007/s12640-012-9340-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12640-012-9340-9

Keywords

Navigation