Skip to main content

Advertisement

Log in

Injectable Hydrogels Providing Sustained Delivery of Vascular Endothelial Growth Factor are Neuroprotective in a Rat Model of Huntington’s Disease

  • Published:
Neurotoxicity Research Aims and scope Submit manuscript

Abstract

Vascular endothelial growth factor (VEGF) is a potent peptide with well-documented pro-angiogenic effects. Recently, it has also become clear that exogenous administration of VEGF is neuroprotective in animal models of central nervous system diseases. In the present study, VEGF was incorporated into a sustained release hydrogel delivery system to examine its potential benefits in a rat model of Huntington’s disease (HD). The VEGF-containing hydrogel was stereotaxically injected into the striatum of adult rats. Three days later, quinolinic acid (QA; 225 nmol) was injected into the ipsilateral striatum to produce neuronal loss and behavioral deficits that mimic those observed in HD. Two weeks after surgery, animals were tested for motor function using the placement and cylinder tests. Control animals received either QA alone or QA plus empty hydrogel implants. Behavioral testing confirmed that the QA lesion resulted in significant deficits in the ability of the control animals to use their contralateral forelimb. In contrast, the performance of those animals receiving VEGF was significantly improved relative to controls with only modest motor impairments observed. Stereological counts of NeuN-positive neurons throughout the striatum demonstrated that VEGF implants significantly protected against the loss of striatal neurons induced by QA. These data are the first to demonstrate that VEGF can be used to protect striatal neurons from excitotoxic damage in a rat model of HD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alberch J, Perez-Navarro E, Canals JM (2002) Neuroprotection by neurotrophins and GDNF family members in the excitotoxic model of Huntington’s disease. Brain Res Bull 57:817–822

    Article  CAS  PubMed  Google Scholar 

  • Alberch J, Perez-Navarro E, Canals JM (2004) Neurotrophic factors in Huntington’s disease. Prog Brain Res 146:195–229

    CAS  PubMed  Google Scholar 

  • Araujo DM, Hilt D (1997) Glial cell line-derived neurotrophic factor attenuates the excitotoxin-induced behavioral and neurochemical deficits in a rodent model of Huntington’s disease. Neuroscience 81:1099–1110

    Article  CAS  PubMed  Google Scholar 

  • Araujo DM, Hilt DC (1998) Glial cell line-derived neurotrophic factor attenuates the locomotor hypofunction and striatonigral neurochemical deficits induced by chronic systemic administration of the mitochondrial toxin 3-nitropropionic acid. Neuroscience 82:117–127

    Article  CAS  PubMed  Google Scholar 

  • Bloch J, Bachoud-Lévi AC, Déglon N, Lefaucheur JP, Winkel L, Palfi S, Nguyen JP, Bourdet C, Gaura V, Remy P, Brugières P, Boisse MF, Baudic S, Cesaro P, Hantraye P, Aebischer P, Peschanski M (2004) Neuroprotective gene therapy for Huntington’s disease, using polymer encapsulated cells engineered to secrete human ciliary neurotrophic factor: results of a phase I study. Hum Gene Ther 15:968–975

    Article  CAS  PubMed  Google Scholar 

  • Bogaert E, Van Damme P, Poesen K, Dhondt J, Hersmus N, Kiraly D, Scheveneels W, Robberecht W, Van Den Bosch L (2009) VEGF protects motor neurons against excitotoxicity by upregulation of GluR2. Neurobiol. Aging Jan 28 epub

  • Cavalieri B (1966) Geometri degli indvisibli Tornio. Unione Tipografico, Editrice, pp 1–543

    Google Scholar 

  • Chu Y, Le W, Kompoliti K, Jankovic J, Mufson EJ, Kordower JH (2006) Nurr1 in Parkinson disease and related disorders. J Comp Neurol 494:495–514

    Article  CAS  PubMed  Google Scholar 

  • Conneally PM, Wallace MR, Gusella JF, Wexler NS (1984) Huntington’s disease: estimation of heterozygote status using linked genetic markers. Genet Epidemiol 1:81–88

    Article  CAS  PubMed  Google Scholar 

  • Croll SD, Wiegand SJ (2001) Vascular growth factors in cerebral ischemia. Mol Neurobiol 23:121–135

    Article  CAS  PubMed  Google Scholar 

  • Davies SW, Beardsall K (1992) Nerve growth factor selectively prevents excitotoxin-induced degeneration of striatal cholinergic neurones. Neurosci Lett 140:161–164

    Article  CAS  PubMed  Google Scholar 

  • de Almeida LP, Zala D, Aebischer P, Deglon N (2001) Neuroprotective effect of a CNTF-expressing lentiviral vector in the quinolinic acid rat model of Huntington’s disease. Neurobiol Dis 8:P433–P446

    Article  Google Scholar 

  • Emerich DF (2001) Neuroprotective possibilities for Huntington’s disease. Expert Opin Biol Ther 1:467–479

    Article  CAS  PubMed  Google Scholar 

  • Emerich DF, Thanos CG (2006) Intracompartmental delivery of CNTF as therapy for Huntington’s disease and retinitis pigmentosa. Curr Gene Ther 6:147–159

    Article  CAS  PubMed  Google Scholar 

  • Emerich DF, Winn SR, Lindner MD, Frydel BR, Kordower JH (1996) Implants of encapsulated human CNTF-producing fibroblasts prevent behavioral deficits and striatal degeneration in a rodent model of Huntington’s disease. J Neurosci 16:5168–5181

    CAS  PubMed  Google Scholar 

  • Emerich DF, Winn SR, Chen EY, Chu Y, McDermott P, Baetge E, Kordower JH (1997) Protection of basal ganglia circuitry by encapsulated CNTF-producing cells in a primate model of Huntington’s disease. Nature 386:395–399

    Article  CAS  PubMed  Google Scholar 

  • Estrada Sanchez AM, Mejia-Toiber J, Massieu L (2008) Excitotoxic neuronal death and the pathogenesis of Huntington’s disease. Arch Med Res 39:265–276

    Article  CAS  PubMed  Google Scholar 

  • Fienberg AA, Greengard P (2000) The DARPP-32 knockout mouse. Brain Res Brain Res Rev 2:313–319

    Article  Google Scholar 

  • Ganhann FM, Popel AS (2008) Systems biology of vascular endothelial growth factors. Microcirculation 15:715–738

    Article  Google Scholar 

  • Gerber HP, McMurtrey A, Kowalski J, Yan M, Keyt BA, Dixit V, Ferrara N (1998) Vascular endothelial growth factor regulates endothelial cell survival through the phosphatidylinositol 3-kinase/Akt signal transduction pathway. Requirement for Flk/KDR activation. J Biol Chem 273:30336–30343

    Article  CAS  PubMed  Google Scholar 

  • Gratacos E, Perez-Navarro E, Tolosa E, Arenas E, Alberch J (2001) Neuroprotection of striatal neurons against kainate excitotoxicity by neurotrophins and GDNF family members. J Neurochem 78:1287–1296

    Article  CAS  PubMed  Google Scholar 

  • Greenamyre JT, Shoulson I (1994) Huntington’s disease. In: Calne D (ed) Neurodegenerative Diseases. Saunders Press, Inc., Philadelphia, pp 685–704

    Google Scholar 

  • Greengard P (2001) The neurobiology of dopamine signaling. Biosci Rep 3:247–269

    Article  Google Scholar 

  • Gundersen H, Jensen EB (1987) The efficiency of systematic sampling in stereology and its prediction. J Microsc 147:229–263

    CAS  PubMed  Google Scholar 

  • Hao X, Silva E, Mansson-Broberg A, Grinnemo KH, Siddiqui AJ, Deligren G, Wardell E, Brodin LA, Mooney DJ, Sylven C (2007) Angiogenic effects of sequential release of VEGF-A165 and PDGF-BB with alginate hydrogels after myocardial infarction. Cardiovasc Res 75:178–185

    Article  CAS  PubMed  Google Scholar 

  • Jin KL, Mao XO, Nagayama T, Goldsmith PC, Greenberg DA (2000) Induction of vascular endothelial growth factor and hypoxia-inducible factor-1alpha by global ischemia in rat brain. Neuroscience 99:577–585

    Article  CAS  PubMed  Google Scholar 

  • Jin K, Mao XO, Greenberg DA (2006) Vascular endothelial growth factor stimulates neurite outgrowth from cerebral cortical neurons via Rho kinase signaling. J Neurobiol 66:236–246

    Article  CAS  PubMed  Google Scholar 

  • Kells AP, Fong DM, Dragunow M, During MJ, Young D, Conor B (2004) AAV-mediated gene delivery of BDNF or GDNF is neuroprotective in a mouse model of Huntington disease. Mol Ther 9:682–688

    Article  CAS  PubMed  Google Scholar 

  • Kordower JH, Isacson O, Emerich DF (1999) Cellular delivery of trophic factors for the treatment of Huntington’s disease: is neuroprotection possible? Exp Neurol 159:4–20

    Article  CAS  PubMed  Google Scholar 

  • Kordower JH, Chu Y, Stebbins GT, DeKosky ST, Cochran EJ, Bennett D, Mufson EJ (2001) Loss and atrophy of layer II entorhinal cortex neurons in elderly people with mild cognitive impairment. Ann Neurol 49:202–213

    Article  CAS  PubMed  Google Scholar 

  • Manoonkitiwongsa PS, Schultz RL, McCreery DB, Whitter EF, Lyden PD (2004) Neuroprotection of ischemic brain by vascular endothelial growth factor is critically dependent on proper dosage and may be compromised by angiogenesis. J Cereb Blood Flow Metab 24:693–702

    Article  CAS  PubMed  Google Scholar 

  • Marks WJ Jr, Ostrem JL, Verhagen L, Starr PA, Larson PS, Bakay RA, Taylor R, Cahn-Weiner DA, Stoessl AJ, Olanow CW, Bartus RT (2008) Safety and tolerability of intraputaminal delivery of CERE-120 (adeno-associated virus serotype 2-neurturin) to patients with idiopathic Parkinson’s disease: an open label, phase I study. Lancet Neurol 7:400–408

    Article  PubMed  Google Scholar 

  • Matsuzaki H, Tamatani M, Yamaguchi A, Namikawa K, Kiyama H, Vitek MP, Mitsuda N, Tohyama M (2001) FASEB J 15:1218–1220

    CAS  PubMed  Google Scholar 

  • McBride JL, During MJ, Wu J, Chen EY, Leurgans SE, Kordower JH (2003) Structural and functional neuroprotection in a rat model of Huntington’s disease by viral gene transfer of GDNF. Exp Neurol 181:213–223

    Article  CAS  PubMed  Google Scholar 

  • Menei P, Pean JM, Nerriere-Daguin V, Jollivet C, Brachet P, Benoit JP (2000) Intracerebral implantation of NGF-releasing biodegradable microspheres protects striatum against excitotoxic damage. Exp Neurol 161:259–272

    Article  CAS  PubMed  Google Scholar 

  • Mittoux V, Joseph JM, Conde F, Palfi S, Dautry C, Poyot T, Bloch J, Deglon N, Ouary S, Nimchinsky EA, Brouillet E, Hof PR, Peschanski M, Aebischer P, Hantraye P (2000) Restoration of cognitive and motor function with ciliary neurotrophic factor in a primate model of Huntington’s disease. Hum Gene Ther 11:1177–1187

    Article  CAS  PubMed  Google Scholar 

  • Nishijima K, Ng YS, Zhong L, Bradley J, Schubert W, Jo N, Akita J, Samuelsson SJ, Robinson GS, Adamis AP, Shima DT (2007) Vascular endothelial growth factor-A is a survival factor for retinal neurons and a critical neuroprotectant during the adaptive response to ischemic injury. Am J Pathol 171:53–67

    Article  CAS  PubMed  Google Scholar 

  • Perez-Navarro E, Arenas E, Reiriz J, Calvo N, Alberch J (1996) Glial cell line-derived neurotrophic factor protects striatal calbindin immunoreactive neurons from exitotoxic damage. Neuroscience 75:345–352

    Article  CAS  PubMed  Google Scholar 

  • Perez-Navarro E, Arenas E, Marco S, Alberch J (1999) Intrastriatal grafting of a GDNF-producing cell line protects striatonigral neurons from quinolinic acid excitotoxicity in vivo. Eur J NeuroSci 11:241–249

    Article  CAS  PubMed  Google Scholar 

  • Perez-Navarro E, Canudas AM, Akerund P, Alberch J, Arenas E (2000) Brain-derived neurotrophic factor, neurotrophin-3, and neurotrophin-4/5 prevent the death of striatal projection neurons in a rodent model of Huntington’s disease. J Neurochem 75:2190–2199

    Article  CAS  PubMed  Google Scholar 

  • Ramaswamy S, McBride JL, Han I, Berry-Kravis EM, Zhou L, Herzog CD, Gasmi M, Bartus RT, Kordower JH (2009) Intrastriatal CERE-120 (AAV-Neurturin) protects striatal and cortical neurons and delays motor deficits in a transgenic mouse model of Huntington’s disease. Neurobiol Dis 3:40–50

    Article  Google Scholar 

  • Rosenstein JM, Krum JM (2004) New roles for VEGF in nervous tissue-beyond blood vessels. Exp Neurol 187:246–253

    Article  CAS  PubMed  Google Scholar 

  • Saint-Geniez M, Maharaj AS, Walshe TE, Tucker BA, Sekiuama E, Kurihara T, Darland DC, Young MJ, D’Amore PA (2008) Endogenous VEGF is required for visual function: evidence for a survival role on muller cells and photoreceptors. PLoS ONE 3:e3554

    Article  PubMed  Google Scholar 

  • Sathasivam S (2008) VEGF and ALS. Neurosci Res 62:71–77

    Article  CAS  PubMed  Google Scholar 

  • Schmitz C, Hof PR (2000) Recommendations of straightforward and rigorous methods of counting neurons based on a computer simulation approach. J Chem Neuroanat 20:93–114

    Article  CAS  PubMed  Google Scholar 

  • Shoulson I (1981) Huntington’s disease: functional capacities in patients treated with neuroleptic and antidepressant drugs. Neurology 31:1333–1335

    CAS  PubMed  Google Scholar 

  • Silva EA, Mooney DJ (2007) Spatiotemporal control of vascular endothelial growth factor delivery from injectable hydrogels enhances angiogenesis. J Thromb Haemost 5:590–598

    Article  CAS  PubMed  Google Scholar 

  • Silverman WF, Krum JM, Mani N, Rosenstein JM (1999) Vascular, glial, and neuronal effects of vascular endothelial growth factor in mesencephalic explants cultures. Neuroscience 90:1529–1541

    Article  CAS  PubMed  Google Scholar 

  • Sondell M, Lundborg G, Kanje M (1999) Vascular endothelial growth factor stimulates Schwaan cell invasion and neovascularization of acellular nerve grafts. Brain Res 846:219–228

    Article  CAS  PubMed  Google Scholar 

  • Storkebaum E, Lambrechts D, Carmeliet P (2004) VEGF: once regarded as a specific angiogenic factor, now implicated in neuroprotection. Bioessays 26:943–954

    Article  CAS  PubMed  Google Scholar 

  • Sun FY, Guo X (2005) Molecular and cellular mechanisms of neuroprotection by vascular endothelial growth factor. J Neurosci Res 79:180–184

    Article  CAS  PubMed  Google Scholar 

  • Svensson B, Peters M, Konig HG, Poppe M, Levkau B, Rothermundt M, Arolt V, Kogel D, Prehn JH (2002) Vascular endothelial growth factor protects cultured rat hippocampal neurons against hypoxic injury via an antiexcitotoxic, caspase-independent mechanism. J Cereb Blood Flow Metab 22:1170–1175

    Article  CAS  PubMed  Google Scholar 

  • The Huntington’s Disease Collaborative Research Group (1993) A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. Cell 72:971–978

    Article  Google Scholar 

  • Tian Y, Tang CJ, Wang JN, Feng XW, Wang L, Qiao X, Sun SG (2007) Favorable effects of VEGF gene transfer on a rat model of Parkinsons disease using adeno-associated viral vectors. Neurosci Lett 421:239–244

    Article  CAS  PubMed  Google Scholar 

  • Tolosa L, Mir M, Asensio VJ, Olmos G, Llado J (2008) Vascular endothelial growth factor protects spinal cord motoneurons against glutamate-induced excitotoxicity via phosphatidylinositol 3-kinase. J Neurochem 105:1080–1090

    Article  CAS  PubMed  Google Scholar 

  • Tovar-Y-Romo LB, Zepeda A, Tapia R (2007) Vascular endothelial growth factor prevents paralysis and motoneuron death in a rat model of excitotoxic spinal cord neurodegeneration. J Neuropathol Exper Neurol 66:913–922

    Article  CAS  Google Scholar 

  • Vezzani A (2008) VEGF as a target for neuroprotection. Epilepsy Curr 8:135–137

    Article  PubMed  Google Scholar 

  • Wang Y, Mao XO, Xie L, Banwait S, Marti HH, Greenberg DA, Jin K (2007) Vascular endothelial growth factor overexpression delays neurodegeneration and prolongs survival in amyotrophic lateral sclerosis. J Neurosci 27:304–307

    Article  PubMed  Google Scholar 

  • West MJ, Slomianka L, Gundersen HJ (1991) Unbiased stereological estimation of the total number of neurons in the subdivisions of the rat hippocampus using the optical fractionator. Anat Rec 231:482–497

    Article  CAS  PubMed  Google Scholar 

  • West MJ, Ostergaard K, Andreassen OA, Finsen B (1996) Estimation of the number of somatostatin neurons in the striatum: an in situ hybridization study using the optical fractionator method. J Comp Neurol 370:11–22

    Article  CAS  PubMed  Google Scholar 

  • Wick A, Wick W, Walternberger J, Weller M, Dichgans J, Schulz JB (2002) Neuroprotection by hypoxic preconditioning requires sequential activation of vascular endothelial growth factor receptor and Akt. J. Neuroscience 22:6401–6407

    CAS  Google Scholar 

  • Yasuhara T, Date I (2007) Intracerebral transplantation of genetically engineered cells for Parkinsons disease: toward clinical application. Cell Transpl 16:125–132

    Google Scholar 

  • Yasuhara T, Shingo T, Kobayashi K, Takeuchi A, Yano A, Muraoka K, Matsui T, Miyoshi Y, Hamada H, Date I (2004) Neuroprotective effects of vascular endothelial growth factor (VEGF) upon dopaminergic neurons in a rat model of Parksinson’s disease. Eur J NeuroSci 19:1494–1504

    Article  PubMed  Google Scholar 

  • Yasuhara T, Shingo T, Muraoka K, Kameda M, Agari T, Wen Ji Y, Hayase H, Hamada H, Borlongan CV, Date I (2005) Neurorescue effects of VEGF on a rat model of Parkinson’s disease. Brain Res 1053:10–18

    Article  CAS  PubMed  Google Scholar 

  • Zurn AD, Henry H, Schluep M, Aubert V, Winkel L, Eilers B, Bachmann C, Aebischer P (2000) Evaluation of an intrathecal immune response in amyotrophic lateral sclerosis patients implanted with encapsulated genetically engineered xenogeneic cells. Cell Transplant 9:471–484

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dwaine F. Emerich.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Emerich, D.F., Mooney, D.J., Storrie, H. et al. Injectable Hydrogels Providing Sustained Delivery of Vascular Endothelial Growth Factor are Neuroprotective in a Rat Model of Huntington’s Disease. Neurotox Res 17, 66–74 (2010). https://doi.org/10.1007/s12640-009-9079-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12640-009-9079-0

Keywords

Navigation