Skip to main content
Log in

Absorption Enhancement in Ultrathin Structures Based on Crystalline-Si/Ag Parabola Nanocones Periodic Arrays with Broadband Antireflection Property

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

In this study, we examine the optical properties and unique features of a novel design of a parabola nanocone consisting of a homogenous shell-like cover layer of crystalline silicon (c-Si) and an Ag core which provides an enhanced absorption efficiency and significant photocurrent conversion during exposure to an incident light. Determining the geometrical sizes of the c-Si/Ag parabola nanocone, we designed an antireflection nanostructure based on certain arrays of investigated cone arrays on a GaAs substrate. We proved that the examined nanostructure shows a low percentage of reflectance of 6.24 % and a significant short current density of ~37.2 mA/m 2 as well as broadband antireflection facility. This understanding paves the way for novel methods toward the use of a simple and two layer nanoparticle in designing efficient and high performance antireflection layers of photovoltaics and solar cells that are able to function over a wide range of spectrum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Callahan DM, Munday JN, Atwater HA (2012) Solar cell light trapping beyond the ray optic limit. Nano Lett 12:214–218

    Article  CAS  Google Scholar 

  2. Mokkapati S, Catchpole KR (2012) Nanophotonic light trapping in solar cells. J Appl Phys 112:101101

    Article  Google Scholar 

  3. Battaglia C, Escarré J, Söderström K, Charriére M, Despeisse M, Haug FJ, Ballif C (2011) Nanomoulding of transparent zinc oxide electrodes for efficient light trapping in solar cells. Nat Photonics 5:535–538

    Article  CAS  Google Scholar 

  4. Kelzenberg MD, Boettcher SW, Petykiewicz JA, Turner-Evans DB, Putnam MC, Warren EL, Spurgeon JM, Briggs RM, Lewis NS, Atwater HA (2010) Enhanced absorption and carrier collection in Si Wire arrays for photovoltaic applications. Nat Mater 9:239–244

    Article  CAS  Google Scholar 

  5. Pala RA, White J, Barnard E, Liu J, Brongersma ML (2009) Design of plasmonic thin-film solar cells with broadband absorption enhancements. Adv Mater 21:3504–3509

    Article  CAS  Google Scholar 

  6. Ferry VE, Sweatlock LA, Pacifici D, Atwater HA (2008) Plasmonic nanostructure design for efficient light coupling into solar cells. Nano Lett 8:4391–4397

    Article  CAS  Google Scholar 

  7. Yablonovitch E (1982) Statistical ray optics. J Opt Soc Am 72:899–907

    Article  Google Scholar 

  8. Markvart T (2011) Beyond the Yablonovitch limit: Trapping light by frequency shift. Appl Phys lett 98:071107

    Article  Google Scholar 

  9. Wand PH, Millard M, Brolo AG (2014) Optimizing plasmonic silicon photovoltaics with Ag and Au nanoparticle mixtures. J Phys Chem C 118:5889–5895

    Article  Google Scholar 

  10. Wang KX, Yu Z, Liu V, Cui Y, Fan S (2012) Absorption enhancement in ultrathin crystalline silicon solar cells with antireflection and light trapping nanocone gratings. Nano Lett 12:1616–1619

    Article  CAS  Google Scholar 

  11. Song YM, Jang SJ, Yu JS, Lee YT (2010) Bioinspired parabola subwavelength structures for improved broadband antireflection. Small 6:984–987

    Article  CAS  Google Scholar 

  12. Xi JQ, Schubert MF, Kim JK, Schubert EF, Chen M, Lin SY, Liu W, Smart JA (2007) Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection. Nat Photonics 1:176–179

    CAS  Google Scholar 

  13. Grann EB, Varga MG, Pommet DA (1995) Optimal design for antireflective tapered two dimensional subwavelength grating structures. J Opt Soc Am A 12:333–339

    Article  Google Scholar 

  14. Catchpole KR, Polman A (2008) Plasmonic solar cells. Opt Express 16:21793–21800

    Article  CAS  Google Scholar 

  15. Huang YF, Chattopadhyay S, Jen YJ, Peng CY, Liu TA, Hsu YK, Pan CL, Lo HC, Hsu CS, Chang YH, Lee CS, Chen KS, Chen LC (2007) Improved broadband and quasi-omnidirectional anti-reflection properties with biomimic silicon nanostructures. Nat Nanotechnol 2:770–774

    Article  CAS  Google Scholar 

  16. Lee C, Bae SY, Mobasser S, Manohara H (2005) A novel silicon nanotips antireflection surface for the micro sun sensor. Nano Lett 5:2438–2442

    Article  CAS  Google Scholar 

  17. Yu Y, Ferry VE, Alivisatos AP, Cao L (2012) Dielectric core-shell optical antennas for strong solar absorption enhancement. Nano Lett 12:3674–3681

    Article  CAS  Google Scholar 

  18. ASTM (2012) G173-03, terrestrial reference spectra for photovoltaic performance evaluation. American Society for Testing and Materials, West Conshohocken, PA

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arash Ahmadivand.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmadivand, A., Pala, N. Absorption Enhancement in Ultrathin Structures Based on Crystalline-Si/Ag Parabola Nanocones Periodic Arrays with Broadband Antireflection Property. Silicon 9, 25–29 (2017). https://doi.org/10.1007/s12633-015-9341-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-015-9341-4

Keywords

Navigation