Skip to main content
Log in

A Comparison of Protease Active Sites and their Ability to Process Silicon-Based Substrates

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

Many enzymes have been identified that can participate in the hydrolysis of alkoxysilanes; each with a different degree of specificity. Our working hypothesis was that the nature of the active site of the enzyme (i.e., the compatibility of binding pockets with the substrate) could have a direct effect on the rate of catalysis. This communication reports our experiments on the relative rates of hydrolysis of a model alkoxysilane, phenyltrimethoxysilane (PTMS), by three proteases: trypsin, α-chymotrypsin, and pepsin. Trypsin which typically accepts amino acids bearing positively charged basic residues was not particularly proficient for the hydrolysis of PTMS. On the other hand, both α-chymotrypsin and pepsin, each of which contains a binding pocket, or two in the case of pepsin, suitable for accommodating aromatic residues, were more suitable for mediating hydrolysis. This report provides some preliminary data to support the hypothesis that the architecture of the enzyme active site is important in determining the proficiency with which an enzyme will process a given organosilicon substrate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Frampton M, Vawda A, Fletcher J, Zelisko PM (2008) Chem Commun 5545

  2. Frampton M, Simionescu R, Zelisko PM (2009) Silicon 1:47

    Article  CAS  Google Scholar 

  3. Frampton MB, Simionescu R, Dudding T, Zelisko PM (2010) J MolCat B: Enz 66:105

    Article  CAS  Google Scholar 

  4. Bassindale AR, Brandstadt KF, Lane TH, Taylor PG (2003) J Inorg Biochem 96:401

    Article  CAS  Google Scholar 

  5. Abbate V, Bassindale AR, Brandstadt KF, Lawson R, Taylor PG (2010) Dalton Trans 39:3961

    Article  Google Scholar 

  6. Iler RK (1979) The chemistry of silica, solubility, polymerization, colloid and surface properties, and biochemistry. Wiley, New York, NY

    Google Scholar 

  7. Kroger N, Deutzmann R, Sumper M (1999) Science 286:1129

    Article  CAS  Google Scholar 

  8. Shimizu K, Cha JN, Stucky GD, Morse DE (1998) Proc Nat’l Acad Sci USA 95:6234

    Article  CAS  Google Scholar 

  9. Cha JN, Shimizu K, Zhou Y, Christiansen SC, Chmelka BF, Stucky GD, Morse DE (1999) Proc Natl Acad Sci USA 96:361

    Article  CAS  Google Scholar 

  10. Tacke R, Linoh H, Stumpf B, Abraham W, Kieslich K, Ernst L (1983) Zeit für Natur 38:616

    Google Scholar 

  11. Frampton MB, Zelisko PM (2009) Silicon 1:147

    Article  CAS  Google Scholar 

  12. Schröder HC, Krasko A, Brandt D, Wiens M, Nawaz Tahir M, Tremel W, Müller WEG (2007) Porifera Research: Biodiversity Innovation and Sustainability 581

  13. Zelisko PM, Dudding T, Arnelien KR, Stanisic H (2010) Trypsin-catalyzed cross-linking of α,ω-triethoxysilyl-terminated polydimethylsiloxane: An experimental and computational approach. In Clarson SJ, Owen MJ, Smith SD, Van Dyke ME (eds) Advance in silicones and silicone-modified materials. Chapter 5, 47–57, American Chemical Society, Washington, DC

  14. Zhou Y, Shimizu K, Cha JN, Stucky GD, Morse DE (1998) Angew Chem Int Ed 38:780

    Google Scholar 

  15. Taglieber A, Höbenreich H, Carballeira JD, Mondière RJG, Reetz MT (2007) Angew Chem Int Ed 46:8597

    Article  CAS  Google Scholar 

  16. Brinker CJ, Scherer GW (1991) Sol-gel science and technology, the chemistry and physics of sol-gel processing. Academic, San Diego, CA

    Google Scholar 

  17. Belton DJ, Patwardhan SV, Annenkov VA, Danilovtseva EN, Perry CC (2008) Proc Nat’l Acad Sci USA 105:5963

    Article  CAS  Google Scholar 

  18. Annenkov VA, Patwardhan SV, Belton DJ, Danilovtseva EN, Perry CC (2006) Chem Commun 1521

  19. Patwardhan SV, Mukerjee N, Steinitz-Kannan M, Clarson SJ (2003) Chem Commun 1123

  20. Artaki I, Bradley M, Zerda TW, Jonas J (1985) J Phys Chem 89:4399

    Article  CAS  Google Scholar 

  21. Knight CTG, Balec RJ, Kinrade SD (2007) Angew Chem Int Ed 46:8148

    Article  CAS  Google Scholar 

  22. Dong H, Lee M, Thomas RD, Zhang Z, Reidy RF, Meuller DW (2003) J Sol-Gel Sci Technol 28:5

    Article  CAS  Google Scholar 

  23. Fruton JS (1974) Acc Chem Res 7:241

    Article  CAS  Google Scholar 

  24. Poojari Y, Palsule A, Clarson SJ, Gross RA (2008) Eur J Polym Chem 44:3080

    Article  Google Scholar 

  25. Voet D, Voet JG (1990) Biochemistry 3rd Edition (2005). Wiley, New York, NY

    Google Scholar 

  26. Hung SH, Hedstrom L (1998) Prot Eng 11:669

    Article  CAS  Google Scholar 

  27. Berg JM, Tymoczko JL, Stryer J (2002) Biochemistry, 5th edn. W.H. Freeman and Company, New York, NY

    Google Scholar 

  28. Eaborn C (1960) Organosilicon compounds. Butterworths Scientific, London

    Google Scholar 

  29. Brook MA (2000) Silicon in organic, organometallic, and polymer chemistry. Wiley, New York, NY

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul M. Zelisko.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Frampton, M.B., Zelisko, P.M. A Comparison of Protease Active Sites and their Ability to Process Silicon-Based Substrates. Silicon 4, 51–56 (2012). https://doi.org/10.1007/s12633-011-9087-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-011-9087-6

Keywords

Navigation