Skip to main content
Log in

Process—structure—property relationship for plasma-sprayed iron-based amorphous/crystalline composite coatings

  • Published:
International Journal of Minerals, Metallurgy and Materials Aims and scope Submit manuscript

Abstract

This study explores the fabrication of Fe-based amorphous/crystalline coating by air plasma spraying and its dependency on the coating parameters (plasma power, primary gas flow rate, powder feed rate, and stand-off distance). X-ray diffraction of the coatings deposited at optimized spray parameters showed the presence of amorphous/crystalline phase. Coatings deposited at a lower plasma power and highest gas flow rate exhibited better density, hardness, and wear resistance. All coatings demonstrated equally good resistance against the corrosive environment (3.5wt% NaCl solution). Mechanical, wear, and tribological studies indicated that a single process parameter optimization cannot provide good coating performance; instead, all process parameters have a unique role in defining better properties for the coating by controlling the in-flight particle temperature and velocity profile, followed by the cooling pattern of molten droplet before impingement on the substrate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.L. Greer, Metallic glasses, Science, 267(1995), No. 5206, p. 1947.

    Article  CAS  Google Scholar 

  2. M.F. Ashby and A.L. Greer, Metallic glasses as structural materials, Scripta Mater., 54(2006), No. 3, p. 321.

    Article  CAS  Google Scholar 

  3. D.B. Miracle, A structural model for metallic glasses, Nat. Mater., 3(2004), No. 10, p. 697.

    Article  CAS  Google Scholar 

  4. V. Ponnambalam, S.J. Poon, G.J. Shiflet, V.M. Keppens, R. Taylor, and G. Petculescu, Synthesis of iron-based bulk metallic glasses as nonferromagnetic amorphous steel alloys, Appl. Phys. Lett., 83(2003), No. 6, p. 1131.

    Article  CAS  Google Scholar 

  5. C. Suryanarayana and A. Inoue, Iron-based bulk metallic glasses, Int. Mater. Rev., 58(2013), No. 3, p. 131.

    Article  CAS  Google Scholar 

  6. X.J. Gu, S.J. Poon, and G.J. Shiflet, Mechanical properties of iron-based bulk metallic glasses, J. Mater. Res., 22(2007), No. 2, p. 344.

    Article  CAS  Google Scholar 

  7. B.A. Sun and W.H. Wang, The fracture of bulk metallic glasses, Prog. Mater. Sci., 74(2015), p. 211.

    Article  CAS  Google Scholar 

  8. Y.C. Li, C. Zhang, W. Xing, S.F. Guo, and L. Liu, Design of Fe-based bulk metallic glasses with improved wear resistance, ACS Appl. Mater. Interfaces, 10(2018), No. 49, p. 43144.

    Article  CAS  Google Scholar 

  9. A. Kumar, R. Kumar, P. Bijalwan, M. Dutta, A. Banerjee, and T. Laha, Fe-based amorphous/nanocrystalline composite coating by plasma spraying: Effect of heat input on morphology, phase evolution and mechanical properties, J. Alloys Compd., 771(2019), p. 827.

    Article  CAS  Google Scholar 

  10. J. Pan, Q. Chen, N. Li, and L. Liu, Formation of centimeter Fe-based bulk metallic glasses in low vacuum environment, J. Alloys Compd., 463(2008), No. 1–2, p. 246.

    Article  CAS  Google Scholar 

  11. Q.J. Chen, S.B. Guo, X.J. Yang, X.L. Zhou, X.Z. Hua, X.H. Zhu, and Z. Duan, Study on corrosion resistance of Fe-based amorphous coating by laser cladding in hydrochloric acid, Phys. Procedia, 50(2013), p. 297.

    Article  CAS  Google Scholar 

  12. A. Inoue, F.L. Kong, Q.K. Man, B.L. Shen, R.W. Li, and F. Al-Marzouki, Development and applications of Fe- and Co-based bulk glassy alloys and their prospects, J. Alloys Compd., 615(2014), p. S2.

    Article  CAS  Google Scholar 

  13. J. Sort, D.C. Ile, A.P. Zhilyaev, A. Concustell, T. Czeppe, M. Stoica, S. Suriñach, J. Eckert, and M.D. Baró, Cold-consolidation of ball-milled Fe-based amorphous ribbons by high pressure torsion, Scripta Mater., 50(2004), No. 9, p. 1221.

    Article  CAS  Google Scholar 

  14. J. Shen, Q.J. Chen, J.F. Sun, H.B. Fan, and G. Wang, Exceptionally high glass-forming ability of an FeCoCrMoCBY alloy, Appl. Phys. Lett., 86(2005), No. 15, art. No. 151907.

  15. H.X. Li, Z.C. Lu, S.L. Wang, Y. Wu, and Z.P. Lu, Fe-based bulk metallic glasses: Glass formation, fabrication, properties and applications, Prog. Mater. Sci., 103(2019), p. 235.

    Article  CAS  Google Scholar 

  16. Z. Zhou, L. Wang, D.Y. He, F.C. Wang, and Y.B. Liu, Microstructure and electrochemical behavior of Fe-based amorphous metallic coatings fabricated by atmospheric plasma spraying, J. Therm. Spray Technol., 20(2011), No. 1–2, p. 344.

    Article  CAS  Google Scholar 

  17. S. Kumar, J. Kim, H. Kim, and C. Lee, Phase dependence of Fe-based bulk metallic glasses on properties of thermal spray coatings, J. Alloys Compd., 475(2009), No. 1–2, p. L9.

    Article  CAS  Google Scholar 

  18. C. Zhang, L. Liu, K.C. Chan, Q. Chen, and C.Y. Tang, Wear behavior of HVOF-sprayed Fe-based amorphous coatings, Intermetallics, 29(2012), p. 80.

    Article  Google Scholar 

  19. P. Fauchais, Understanding plasma spraying, J. Phys. D: Appl. Phys., 37(2004), No. 9, p. R86.

    Article  CAS  Google Scholar 

  20. R.Q. Guo, C. Zhang, Q. Chen, Y. Yang, N. Li, and L. Liu, Study of structure and corrosion resistance of Fe-based amorphous coatings prepared by HVAF and HVOF, Corros. Sci., 53(2011), No. 7, p. 2351.

    Article  CAS  Google Scholar 

  21. G.Y. Koga, R. Schulz, S. Savoie, A.R.C. Nascimento, Y. Drolet, C. Bolfarini, C.S. Kiminami, and W.J. Botta, Microstructure and wear behavior of Fe-based amorphous HVOF coatings produced from commercial precursors, Surf. Coat. Technol., 309(2017), p. 938.

    Article  CAS  Google Scholar 

  22. C.Y. Zhang, Z.H. Chu, F.S. Wei, W.J. Qin, Y. Yang, Y.C. Dong, D. Huang, and L. Wang, Optimizing process and the properties of the sprayed Fe-based metallic glassy coating by plasma spraying, Surf. Coat. Technol., 319(2017), p. 1.

    Article  CAS  Google Scholar 

  23. Y.Z. Xing, Z. Liu, G. Wang, X.H. Li, C.P. Jiang, Y.N. Chen, Y. Zhang, X.D. Song, and M. Dargusch, Improvement of interfacial bonding between plasma-sprayed cast iron splat and aluminum substrate through preheating substrate, Surf. Coat. Technol., 316(2017), p. 190.

    Article  CAS  Google Scholar 

  24. P. Bijalwan, K.K. Pandey, B. Mukherjee, A. Islam, A. Pathak, M. Dutta, and A.K. Keshri, Tailoring the bimodal zone in plasma sprayed CNT reinforced YSZ coating and its impact on mechanical and tribological properties, Surf. Coat. Technol., 377(2019), art. No. 124870.

  25. R.S. Maurya, A. Sahu, and T. Laha, Quantitative phase analysis in Al86Ni8Y6 bulk glassy alloy synthesized by consolidating mechanically alloyed amorphous powder via spark plasma sintering, Mater. Des., 93(2016), p. 96.

    Article  CAS  Google Scholar 

  26. S. Khandanjou, M. Ghoranneviss, and S. Saviz, The investigation of the microstructure behavior of the spray distances and argon gas flow rates effects on the aluminum coating using self-generated atmospheric plasma spray system, J. Theor. Appl. Phys., 11(2017), No. 3, p. 225.

    Article  Google Scholar 

  27. A.R.M. Sahab, N.H. Saad, S. Kasolang, and J. Saedon, Impact of plasma spray variables parameters on mechanical and wear behaviour of plasma sprayed Al2O3 3%wt TiO2 coating in abrasion and erosion application, Procedia Eng., 41(2012), p. 1689.

    Article  CAS  Google Scholar 

  28. M.A. Moore and F.S. King, Abrasive wear of brittle solids, Wear, 60(1980), No. 1, p. 123.

    Article  CAS  Google Scholar 

  29. S. Ranjan, B. Mukherjee, A. Islam, K.K. Pandey, R. Gupta, and A.K. Keshri, Microstructure, mechanical and high temperature tribological behaviour of graphene nanoplatelets reinforced plasma sprayed titanium nitride coating, J. Eur. Ceram. Soc., 40(2020), No. 3, p. 660.

    Article  CAS  Google Scholar 

  30. M.G. Fontana, Corrosion Engineering, 3rd ed., McGraw Hill Book Co, New York, 1986.

    Google Scholar 

  31. C.A.C. Souza, D.V. Ribeiro, and C.S. Kiminami, Corrosion resistance of Fe-Cr-based amorphous alloys: An overview, J. Non Cryst. Solids, 442(2016), p. 56.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors sincerely acknowledge the financial support provided by Tata Steel Limited, Jamshedpur, India. The authors also sincerely acknowledge the support from the Indian Institute of Technology Patna.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anup Kumar Keshri.

Additional information

Conflict of Interest

The authors declare no potential conflict of interest.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pathak, A., Mukherjee, B., Pandey, K.K. et al. Process—structure—property relationship for plasma-sprayed iron-based amorphous/crystalline composite coatings. Int J Miner Metall Mater 29, 144–152 (2022). https://doi.org/10.1007/s12613-020-2171-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-020-2171-4

Keywords

Navigation