Skip to main content
Log in

An OSSE Study for Deep Argo Array using the GFDL Ensemble Coupled Data Assimilation System

  • Article
  • Published:
Ocean Science Journal Aims and scope Submit manuscript

Abstract

An observing system simulation experiment (OSSE) using an ensemble coupled data assimilation system was designed to investigate the impact of deep ocean Argo profile assimilation in a biased numerical climate system. Based on the modern Argo observational array and an artificial extension to full depth, “observations” drawn from one coupled general circulation model (CM2.0) were assimilated into another model (CM2.1). Our results showed that coupled data assimilation with simultaneous atmospheric and oceanic constraints plays a significant role in preventing deep ocean drift. However, the extension of the Argo array to full depth did not significantly improve the quality of the oceanic climate estimation within the bias magnitude in the twin experiment. Even in the “identical” twin experiment for the deep Argo array from the same model (CM2.1) with the assimilation model, no significant changes were shown in the deep ocean, such as in the Atlantic meridional overturning circulation and the Antarctic bottom water cell. The small ensemble spread and corresponding weak constraints by the deep Argo profiles with medium spatial and temporal resolution may explain why the deep Argo profiles did not improve the deep ocean features in the assimilation system. Additional studies using different assimilation methods with improved spatial and temporal resolution of the deep Argo array are necessary in order to more thoroughly understand the impact of the deep Argo array on the assimilation system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson JL (2003) A local least square framework for ensemble filtering. Mon Weather Rev 131:634–642

    Article  Google Scholar 

  • Balmaseda MA, Trenberth KE, Kallen E (2013) Distinctive climate signals in reanalysis of global ocean heat content. Geophys Res Lett 40:1–6. doi:10.1002/grl.50382

    Article  Google Scholar 

  • Chang Y-S, Zhang S, Rosati A, Delworth TL, Stern WF (2013) An assessment of oceanic variability for 1960–2010 from the GFDL ensemble coupled data assimilation. Clim Dynam 40:775–803. doi:10.1007/s00382-012-1412-2

    Article  Google Scholar 

  • Cunningham SA, Kanzow T, Rayner D, Baringer MO, Johns WE, Marotzke J, Longworth HR, Grant EM, Hirschi JJM, Beal LM, Meinen CS, Bryden HL (2007) Temporal variability of the Atlantic meridional overturning circulation at 26.5°N. Science 317:935–938

    Article  Google Scholar 

  • Desbruyères D, McDonagh E, King B, Garry F, Blaker A, Moat B, Mercier H (2014) Full-depth temperature trends in the Northeastern Atlantic through the early 21st century. Geophys Res Lett 41:7971–7979. doi:10.1002/2014GL061844.

    Article  Google Scholar 

  • Delworth TL, Broccoli AJ, Rosati A, Stouffer RJ, Balaji V, Beesley JA, Cooke WF, Dixon KW, Dunne J, Dunne KA, Durachta JW, Findell KL, Ginoux P, Gnanadesikan A, Gordon CT, Griffies SM, Gudgel R, Harrison MJ, Held IM, Hemler RS, Horowitz LW, Klein SA, Knutson TR, Kushner PJ, Langenhorst AR, Lee H-C, Lin S-J, Lu J, Malyshev SL, Milly PCD, Ramaswamy V, Russell J, Schwarzkopf MD, Shevliakova E, Sirutis JJ, Spelman MJ, Stern WF, Winton M, Wittenberg AT, Wyman B, Zeng F, Zhang R (2006) GFDL’s CM2 global coupled climate models. Part I: formulation and simulation characteristics. J Climate 19(5):643–674. doi:10.1175/JCLI3629.1

    Google Scholar 

  • Ha S-Y, Snyder CM (2014) Influence of surface observations in mesoscale data assimilation using an ensemble Kalman filter. Mon Weather Rev 142:1489–1508

    Article  Google Scholar 

  • Kobayashi T (2013) Deep NINJA collects profiles down to 4,000 meters. Sea Technol 54:41–44

    Google Scholar 

  • Kouketsu S, Doi T, Kawano T, Masuda S, Sugiura N, Sasaki Y, Toyoda T, Igarashi H, Kawai Y, Katsumata K, Uchida H, Fukasawa M, Awaji T (2011) Deep ocean heat content changes estimated from observation and reanalysis product and their influence on sea level change. J Geophys Res 116:C03012. doi:10.1029/2010JC006464

    Article  Google Scholar 

  • Kwon KM, Choi B-J, Lee S-H, Kim YH, Seo G-H, Cho Y-K (2016) Effect of model error representation in the Yellow and East China Sea modeling system based on the ensemble Kalman filter. Ocean Dynam 66:263–283

    Article  Google Scholar 

  • Johnson GC, Lyman JM, Purkey SG (2015) Informing Deep Argo array design using Argo and full-depth hydrographic section data. J Atmos Ocean Tech 32:2187–2198. doi:10.1175/JTECHD-15-0139.1

    Article  Google Scholar 

  • Levitus S, Antonov JI, Boyer TP, Baranova OK, Garcia HE, Locarnini RA, Mishonov AV, Reagan JR, Seidov D, Yarosh ES, Zweng MM (2012) World ocean heat content and thermosteric sea level change (0–2000m), 1955–2010. Geophys Res Lett 39:L10603. doi:10.1029/2012GL051106

    Article  Google Scholar 

  • Lin S-J (2004) A “vertically Lagrangian” finite-volume dynamical core for global models. Mon Weather Rev 132:2293–2307

    Article  Google Scholar 

  • Lyman JM, Good SA, Gouretski VV, Ishii M, Johnson GC, Palmer MD, Smith DA, Willis JK (2010) Robust warming of the global upper ocean. Nature 465:334–337. doi:10.1038/nature09043

    Article  Google Scholar 

  • Masuda S, Awaji T, Sugiura N, Matthews JP, Toyoda T, Kawai Y, Doi T, Kouketsu S, Igarashi H, Katsumata K, Uchida H, Kawano T, Fukasawa M (2010) Simulated rapid warming of abyssal North Pacific waters. Science 329(5989):319–322. doi:10.1126/science.1188703

    Article  Google Scholar 

  • McCarthy G, Frajka-Williams E, Johns WE, Baringer MO, Meinen CS, Bryden HL, Rayner D, Duchez A, Roberts C, Cunningham SA (2012) Observed interannual variability of the Atlantic meridional overturning circulation at 26.5°N. Geophys Res Lett 39:L19609

    Google Scholar 

  • Oke PR, Balmaseda MA, Benkiran M, Cummings JA, Dombrowsky E, Fujii Y, Guinehut S, Larnicol G, Le Traon PY, Martin MJ (2009) Observing system evaluations using GODAE systems. Oceanography 22(3):144–153. doi:10.5670/oceanog.2009.72

    Article  Google Scholar 

  • Pickart RS, Spall MA (2007) Impact of Labrador Sea convection on the North Atlantic meridional overturning circulation. J Phys Oceanogr 37:2207–2227

    Article  Google Scholar 

  • Purkey SG, Johnson GC (2010) Warming of global abyssal and deep Southern Ocean waters between the 1990s and 2000s: contributions to global heat and sea level rise budgets. J Climate 23(23):6336–6351. doi:10.1175/2010JCLI3682.1

    Article  Google Scholar 

  • Roemmich D, Church J, Gilson J, Monselesan D, Sutton P, Wijffels S (2015) Unabated planetary warming and its ocean structure since 2006. Nat Clim Change 5:240–245. doi:10.1038/nclimate2513

    Article  Google Scholar 

  • Le Reste S, Dutreuil V, Andre X, Thierry V, Renaut C, Le Traon PY, Maze G (2016) “Deep-Arvor”: a new profiling float to extend the Argo observations down to 4000m depth. J Atmos Ocean Tech 33(5):1039–1055. doi:10.1175/JTECH-D-15-0214.1

    Article  Google Scholar 

  • Song YT, Colberg F (2011) Deep ocean warming assessed from altimeters, gravity recovery and climate experiment, in situ measurements, and a non-Boussinesq ocean general circulation model. J Geophys Res 116:C02020. doi:10.1029/2010JC006601

    Google Scholar 

  • Stouffer RJ, Weaver AJ, Eby M (2004) A method for obtaining pretwentieth century initial conditions for use in climate change studies. Clim Dynam 23:327–339

    Article  Google Scholar 

  • Stouffer RJ, Seidov D, Haupt BJ (2007) Climate response to external sources of freshwater: North Atlantic versus the Southern Ocean. J Climate 20:436–448

    Article  Google Scholar 

  • Willis JK (2010) Can in-situ floats and satellite altimeters detect changes in Atlantic Ocean overturning? Geophys Res Lett 37:L06602. doi:10.1029/2010GL042372

    Article  Google Scholar 

  • Zhang S, Harrison MJ, Rosati A, Wittenberg AT (2007) System design and evaluation of coupled ensemble data assimilation for global oceanic climate studies. Mon Weather Rev 135:3541–3564

    Article  Google Scholar 

  • Zhang S, Rosati A (2010) An inflated ensemble filter for ocean data assimilation with a biased coupled GCM. Mon Weather Rev 138:3905–3931

    Article  Google Scholar 

  • Zhang S, Rosati A, Delworth TL (2010) The adequacy of observing systems in monitoring the Atlantic meridional overturning circulation and North Atlantic climate. J Climate 23:5311–5324

    Article  Google Scholar 

  • Zhang S, Chang Y-S, Yang X, Rosati A (2014) Balanced and coherent climate estimation by combining data with a biased coupled model. J Climate 27:1302–1314. doi:10.1175/JCLI-D-13-00260.1

    Article  Google Scholar 

  • Zhang L, Delworth TL (2016) Impact of the Antarctic bottom water formation on the Weddell Gyre and its northward propagation characteristics in GFDL model. J Geophys Res-Oceans 121:5825–5846. doi:10.1002/2016JC011790

    Article  Google Scholar 

  • Zilberman N, Maze G (2015) Report on the deep Argo implementation workshop. IFREMER Doc. LPO-15-04, 36 p

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to You-Soon Chang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, YS., Zhang, S., Rosati, A. et al. An OSSE Study for Deep Argo Array using the GFDL Ensemble Coupled Data Assimilation System. Ocean Sci. J. 53, 179–189 (2018). https://doi.org/10.1007/s12601-018-0007-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12601-018-0007-1

Keywords

Navigation