Skip to main content
Log in

Microstructure, magnetic properties of hexagonal barium ferrite powder based on calcination temperature and holding time

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

In this paper, single-phase and fine-grain hexagonal barium ferrite powder was prepared based on the optimal calcination condition. The influence of calcination conditions including temperature and holding time on microstructure and magnetic properties of powder were studied in detail. Firstly, θ–2θ scan X-ray diffraction (XRD) results reveal that it is hard to obtain single phase of powder when the calcination temperature is lower than 850 °C. In addition, the calcination time for single phase of barium ferrite powder was reduced with the increase in calcination temperature. Scanning electron microscopy (SEM) images and magnetic hysteresis loops show that the condition of low temperature and long holding time is beneficial for obtaining homogeneous size of grain and excellent magnetic properties. Consequently, hexagonal barium ferrite powder with uniform grain size of ~ 180 nm, high purity and excellent magnetic properties is obtained at optimal calcination condition of 850 °C–10.0 h.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ghasemi A, Hossienpour A, Morisako A, Saatchi A, Salehi M. Electromagnetic properties and microwave absorbing characteristics of doped barium hexaferrite. J Magn Magn Mater. 2006;302(2):429.

    Article  CAS  Google Scholar 

  2. Zheng H, Han MG, Zheng L, Deng JX, Zheng P, Wu Q, Deng LJ, Qin HB. Magnetic properties of hexagonal barium ferrite films on Pt/MgO(111) substrates annealed at different temperatures. J Magn Magn Mater. 2016;413:25.

    Article  CAS  Google Scholar 

  3. Nikmanesh H, Moradi M, Bordbar GH, Alam RS. Effect of multi dopant barium hexaferrite nanoparticles on the structural, magnetic, and X-Ku bands microwave absorption properties. J Alloy Compd. 2017;708:99.

    Article  CAS  Google Scholar 

  4. Liu GF, Fan RH, Zhang ZD, Li J, Chen M, Li QQ, Lu L, Xie PT. Magnetic properties and special morphology of barium ferrite via electrospinning. Rare Met. 2017;36(2):113.

    Article  CAS  Google Scholar 

  5. Che S, Wang J, Chen QW. Soft magnetic nanoparticles of BaFe12O19 fabricated under mild conditions. J Phys Condens Matter. 2003;15(22):L335.

    Article  CAS  Google Scholar 

  6. Gubin SP, Koksharov YA, Khomutov GB, Yurkov GY. Magnetic nanoparticles preparation, structure and properties. Russ Chem Rev. 2006;37(1):489.

    Google Scholar 

  7. Zheng H, Han M, Wu Y, Zheng L, Zhao WJ, Deng LJ, Qin HB. Magnetic properties of hexagonal barium ferrite films on Pt(111)/Al2O3(0001) substrate based on optimized thickness of Pt. IEEE Trans Nanotechnol. 2018;17(1):56.

    Article  CAS  Google Scholar 

  8. Dimri MC, Kashyap SC, Dube DC. Complex permittivity and permeability of Co2U(Ba4Co2Fe36O60) hexaferrite bulk and composite thick films at radio and microwave frequencies. IEEE Trans Magn. 2006;42(11):3635.

    Article  CAS  Google Scholar 

  9. Wang JP, Liu Y, Zhang ML, Qiao YJ, Xia T. Comparison of the sol-gel method with the coprecipitation technique for preparation of hexagonal barium ferrite. Chem Res Chin Univ. 2008;24(5):525.

    Article  Google Scholar 

  10. Tian G, Chen X. Structure and multiferroic properties of barium hexaferrite ceramics. J Magn Magn Mater. 2013;327(3):87.

    Google Scholar 

  11. Lisjak D, Drofenik M. Synthesis and characterization of A-Sn-substituted (A = Zn, Ni, Co) BaM–hexaferrite powders and ceramics. J Eur Ceram Soc. 2004;24(6):1841.

    Article  CAS  Google Scholar 

  12. Harris VG. Modern microwave ferrites. IEEE Trans Magn. 2012;48(3):1075.

    Article  CAS  Google Scholar 

  13. Radwan M, Rashad MM, Hessien MM. Synthesis and characterization of barium hexaferrite nanoparticles. J Mater Process Technol. 2007;181(1):106.

    Article  CAS  Google Scholar 

  14. Hao GD, Hao XL, Zhu ZF. Phase composition, morphology and element contents of micro-arc oxidation ceramic coatings on Ti–6Al–4V alloy under different calcination conditions. Rare Met. 2016;35(11):836.

    Article  CAS  Google Scholar 

  15. Ebrahimi F, Yazdi SS. Ferromagnetic resonance investigation of hexaferrite nanoparticles prepared by sol–gel auto-combustion method. J Supercond Novel Magn. 2016;30(4):973.

    Article  Google Scholar 

  16. Liu CY, Zhang YJ, Tang Y, Wang ZR, Ma N, Du PY. The tunable magnetic and microwave absorption properties of the Nb5+–Ni2+ co-doped M-type barium ferrite. J Mater Chem C. 2017;5(14):3461.

    Article  CAS  Google Scholar 

  17. Pubby K, Narang SB, Chawla SK, Mudsainiyan RK. Effect of temperature on dielectric and electrical properties of Co–Zr doped barium hexaferrites prepared by sol–gel method. J Mater Sci Mater Electron. 2016;27(11):11220.

    Article  CAS  Google Scholar 

  18. Roohani E, Arabi H, Sarhaddi R, Sudkhah S. M-type strontium hexaferrite nanoparticles prepared by sol-gel auto-combustion method: the role of Co substitution in structural, morphological, and magnetic properties. J Supercond Novel Magn. 2017;30(6):1599.

    Article  CAS  Google Scholar 

  19. George M, John AM, Nair SS, Joy PA, Anantharaman MR. Finite size effects on the structural and magnetic properties of sol–gel synthesized NiFe2O4 powders. J Magn Magn Mater. 2006;302(1):190.

    Article  CAS  Google Scholar 

  20. Zheng L, Zheng H, Deng JX, Ying ZH, Wu J, Zhou JJ, Qin HB. Synthesis of single-phase nanocrystalline YIG by co-precipitation: the influence of pH value of precursor solution and calcinating. Adv Mater Res. 2011;311–313:1294.

    Article  Google Scholar 

  21. Zhang JR, Gao L. Synthesis and characterization of nanocrystalline tin oxide by sol–gel method. J Solid State Chem. 2004;177(4):1425.

    Article  CAS  Google Scholar 

  22. Zhao WY, Wei P, Wu XY, Wang W, Zhang QJ. Lattice vibration characterization and magnetic properties of M-type barium hexaferrite with excessive iron. J Appl Phys. 2008;103(6):1188.

    Article  Google Scholar 

  23. Wu CS, Chen CH. A visible-light response vanadium-dopedtitania nanocatalyst by sol–gel method. J Photochem Photobiol A. 2004;163(3):509.

    Article  CAS  Google Scholar 

  24. Huang JG, Zhuang HR, Li WL. Synthesis and characterization of nano crystalline BaFe12O19 powders by low temperature combustion. Mater Res Bull. 2003;38(1):149.

    Article  CAS  Google Scholar 

  25. Kim SG, Wang WN, Iwaki T, Yabuki A, Okuyama K. Low-temperature crystallization of barium ferrite nanoparticles by a sodium citrate-aided synthetic process. J Phys Chem C. 2007;111(28):1.

    Google Scholar 

  26. Mali A, Ataie A. Influence of Fe/Ba molar ratio on the characteristics of Ba-hexaferrite particles prepared by sol–gel combustion method. J Alloy Compd. 2005;399(1–2):245.

    Article  CAS  Google Scholar 

  27. Martirosyan KS, Galstyan E, Hossain SM, Wang YJ, Litvinov D. Barium hexaferrite nanoparticles: synthesis and magnetic properties. Mater Sci Eng B. 2011;176(1):8.

    Article  CAS  Google Scholar 

  28. Mali A, Ataie A. Structural characterization of nano-crystalline BaFe12O19 powders synthesized by sol–gel combustion route. Scripta Mater. 2005;53(9):1065.

    Article  CAS  Google Scholar 

  29. Chen IW, Wang XH. Sintering dense nanocrystalline ceramics without final-stage grain growth. Nature. 2000;404(6774):168.

    Article  CAS  Google Scholar 

  30. Li XX, Zhou JJ, Deng JX, Zheng H, Zheng P, Qin HB. Synthesis of dense, fine-grained YIG ceramics by two-step sintering. J Electron Mater. 2016;45(10):1.

    Google Scholar 

  31. Goya GF, Berquo TS, Fonseca FC, Morales MP. Static and dynamic magnetic properties of spherical magnetite nanoparticles. J Appl Phys. 2003;94(5):3520.

    Article  CAS  Google Scholar 

  32. Ji DH, Hou X, Tang GD, Li ZZ, Hou DL, Zhu MG. Oxygen content and magnetic properties of composites La0.75Sr0.25MnO3–δ calcined at different temperatures. Rare Met. 2014;33(4):452.

    Article  CAS  Google Scholar 

  33. Alam RS, Moradi M, Rostami M, Nikmanesh H, Moayedi R, Bai Y. Structural, magnetic and microwave absorption properties of doped Ba-hexaferrite nanoparticles synthesized by co-precipitation method. J Magn Magn Mater. 2015;381(381):1.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Natural Science Foundation of Zhejiang Province of China (Nos. LQ17A040002 and LY17F010021), the National Natural Science Foundation of China (No. 51702075), the Key R&D Program of Zhejiang Province of China (No. 2017C01004) and the Nonprofit technology Research Program of Zhejiang Province (No. 2017C31019).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Zheng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, SY., Zheng, H., Zheng, P. et al. Microstructure, magnetic properties of hexagonal barium ferrite powder based on calcination temperature and holding time. Rare Met. 40, 981–986 (2021). https://doi.org/10.1007/s12598-018-1153-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-018-1153-4

Keywords

Navigation