Skip to main content
Log in

Heat shielding effects in the Earth’s crust

  • Geodynamics
  • Published:
Journal of Earth Science Aims and scope Submit manuscript

Abstract

Knowledge of heat flow and associated variations of temperature with depth is crucial for understanding how the Earth functions. Here, we demonstrate possible heat shielding effects that result from the occurrence of mafic intrusions/layers (granulitic rocks) within a dominantly granitic middle crust and/or ultramafic intrusions/layers (peridotitic rocks) within a dominantly granulitic lower crust; heat shielding is a familiar phenomenon in heat engineering and thermal metamaterials. Simple one-dimensional calculations suggest that heat shielding due to the intercalation of granitic, granulitic and peridotitic rocks will increase Moho temperatures substantially. This study may lead to a rethinking of numerous proposed lower crustal processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References Cited

  • Artemieva, I. M., 2006. Global 1º×1º Thermal Model TC1 for the Continental Lithosphere: Implications for Lithosphere Secular Evolution. Tectonophysics, 416(1–4): 245–277. doi:10.1016/j.tecto.2005.11.022

    Article  Google Scholar 

  • Bailey, R. C., 1999. Gravity-Driven Continental Overflow and Archaean Tectonics. Nature, 398(6726): 413–415. doi:10.1038/18866

    Article  Google Scholar 

  • Bergantz, G. W., 1989. Underplating and Partial Melting: Implications for Melt Generation and Extraction. Science, 245(4922): 1093–1095. doi:10.1126/science.245.4922.1093

    Article  Google Scholar 

  • Bird, P., 1979. Continental Delamination and the Colorado Plateau. Journal of Geophysical Research, 84: 7561–7571

    Article  Google Scholar 

  • Carcione, J. M., Kosloff, D., Behle, A., 1991. Long-Wave Anisotropy in Stratified Media: A Numerical Test. Geophysics, 56(2): 245–254. doi:10.1190/1.1443037

    Article  Google Scholar 

  • Finlayson, D. M., Owen, A., Johnstone, D., et al., 1993. Moho and Petrologic Crust-Mantle Boundary Coincide under Southeastern Australia. Geology, 21(8): 707. doi:10.1130/0091-7613(1993)021<0707:mapcmb>2.3.co;2

    Article  Google Scholar 

  • Furlong, K. P., Chapman, D. S., 2013. Heat Flow, Heat Generation, and the Thermal State of the Lithosphere. Annual Review of Earth and Planetary Sciences, 41(1): 385–410. doi:10.1146/annurev.earth.031208.100051

    Article  Google Scholar 

  • Gelman, S. E., Gutierrez, F. J., Bachmann, O., 2013. On the Longevity of Large Upper Crustal Silicic Magma Reservoirs. Geology, 41(7): 759–762. doi:10.1130/g34241.1

    Article  Google Scholar 

  • Hale, L. D., Thompson, G. A., 1982. The Seismic Reflection Character of the Continental Mohorovicic Discontinuity. Journal of Geophysical Research: Solid Earth, 87(B6): 4625–4635. doi:10.1029/jb087ib06p04625

    Article  Google Scholar 

  • Hasterok, D., 2013. A Heat Flow Based Cooling Model for Tectonic Plates. Earth and Planetary Science Letters, 361: 34–43. doi:10.1016/j.epsl.2012.10.036

    Article  Google Scholar 

  • Hasterok, D., Chapman, D. S., 2011. Heat Production and Geotherms for the Continental Lithosphere. Earth and Planetary Science Letters, 307(1/2): 59–70. doi:10.1016/j.epsl.2011.04.034

    Article  Google Scholar 

  • Jaupart, C., Mareschal, J. C., 2007. Heat Flow and Thermal Structure of the Lithosphere. In: Shubert, G., Watts, A., eds., Treatise on Geophysics: Crust and Lithospheric Dynamics, Vol. 6. Elsevier, San Francisco. 217–251

    Google Scholar 

  • Li, S. H., Unsworth, M. J., Booker, J. R., et al., 2003. Partial Melt or Aqueous Fluid in the Mid-Crust of Southern Tibet? Constraints from INDEPTH Magnetotelluric Data. Geophysical Journal International, 153(2): 289–304. doi:10.1046/j.1365-246x.2003.01850.x

    Article  Google Scholar 

  • Luo, Y. H., Xu, Y. X., Yang, Y. J., 2013. Crustal Radial Anisotropy beneath the Dabie Orogenic Belt from Ambient Noise Tomography. Geophysical Journal International, 195(2): 1149–1164. doi:10.1093/gji/ggt281

    Article  Google Scholar 

  • Luo, Y. H., Xu, Y. X., Yang, Y. J., 2012. Crustal Structure beneath the Dabie Orogenic Belt from Ambient Noise Tomography. Earth and Planetary Science Letters, 313/314: 12–22. doi:10.1016/j.epsl.2011.11.0042.

    Article  Google Scholar 

  • Makovsky, Y., Klemperer, S. L., 1999. Measuring the Seismic Properties of Tibetan Bright Spots: Evidence for Free Aqueous Fluids in the Tibetan Middle Crust. Journal of Geophysical Research: Solid Earth, 104(B5): 10795–10825. doi:10.1029/1998jb900074

    Article  Google Scholar 

  • Maldovan, M., 2013. Sound and Heat Revolutions in Phononics. Nature, 503(7475): 209–217. doi:10.1038/nature12608

    Article  Google Scholar 

  • McKenzie, D., Jackson, J., Priestley, K., 2005. Thermal Structure of Oceanic and Continental Lithosphere. Earth and Planetary Science Letters, 233(3/4): 337–349. doi:10.1016/j.epsl.2005.02.005

    Article  Google Scholar 

  • Merriman, J. D., Whittington, A. G., Hofmeister, A. M., et al., 2013. Thermal Transport Properties of Major Archean Rock Types to High Temperature and Implications for Cratonic Geotherms. Precambrian Research, 233: 358–372. doi:10.1016/j.precamres.2013.05.009

    Article  Google Scholar 

  • Mooney, W. D., 2007. Crust and Lithospheric Structure-Global Crustal Structure. In: Romanowicz, B., Dziewonski, A., eds., Treatise on Geophysics: Seismology and Structure of the Earth, Vol. 1. Elsevier, San Francisco. 361–417

    Google Scholar 

  • Narayana, S., Sato, Y., 2012. Heat Flux Manipulation with Engineered Thermal Materials. Phys. Res. Lett., 108: 214303. doi:10.1103/physrevlett.108.214303

    Article  Google Scholar 

  • Nelson, K. D., Zhao, W., Brown, L. D., et al., 1996. Partially Molten Middle Crust beneath Southern Tibet: Synthesis of Project INDEPTH Results. Science, 274: 1684–1688

    Article  Google Scholar 

  • Niu, F., James, D. E., 2002. Fine Structure of the Lowermost Crust beneath the Kaapvaal Craton and Its Implications for Crustal Formation and Evolution. Earth and Planetary Science Letters, 200(1/2): 121–130. doi.org/10.1016/S0012-821X(02)00584-8

    Article  Google Scholar 

  • O’Reilly, S. Y., Griffin, W. L., 2013. Moho vs. Crust-Mantle Boundary: Evolution of an Idea. Tectonophysics, 609: 535–546. doi:10.1016/j.tecto.2012.12.031

    Google Scholar 

  • O’Reilly, B. M., Hauser, F., Readman, P. W., 2010. The Fine-Scale Structure of Upper Continental Lithosphere from Seismic Waveform Methods: Insights into Phanerozoic Crustal Formation Processes. Geophys. J. Int., 180(1): 101–124. doi:10.1111/j.1365-246x.2009.04420.x

    Article  Google Scholar 

  • Petford, N., Cruden, A. R., McCaffrey, K. J., et al., 2000. Granite Magma Formation, Transport and Emplacement in the Earth’s Crust. Nature, 408(6813): 669–673. doi:10.1038/35047000

    Article  Google Scholar 

  • Royden, L. H., Royden, L. H., Burchfiel, B. C., et al., 1997. Surface Deformation and Lower Crust Flow in Eastern Tibet. Science, 276: 788–790

    Article  Google Scholar 

  • Rychert, C. A., Shearer, P. M., 2009. A Global View of the Lithosphere-Asthenosphere Boundary. Science, 324(5926): 495–498. doi:10.1126/science.1169754

    Article  Google Scholar 

  • Searle, M., 2013. Crustal Melting, Ductile Flow, and Deformation in Mountain Belts: Cause and Effect Relationships. Lithosphere, 5(6): 547–554. doi:10.1130/rf.l006.1

    Article  Google Scholar 

  • Shen, X. J., Zhang, W. R., Yang, S. Z., et al., 1990. Heat Flow Evidence for the Differentiated Crust-Mantle Thermal Structures of the Northern and Southern Terranes of the Qinghai-Xizang Plateau. Bulletin of the Chinese Academy of Geological Sciences, 21: 203–214 (in Chinese)

    Google Scholar 

  • Stratford, W., Thybo, H., 2011. Crustal Structure and Composition of the Oslo Graben, Norway. Earth and Planetary Science Letters, 304(3/4): 431–442. doi:10.1016/j.epsl.2011.02.021

    Article  Google Scholar 

  • Teng, J. W., Zhang, Z. J., Zhang, X. K., et al., 2013. Investigation of the Moho Discontinuity beneath the Chinese Mainland Using Deep Seismic Sounding Profiles. Tectonophysics, 609(8): 202–216. doi:10.1016/j.tecto.2012.11.024

    Article  Google Scholar 

  • Thompson, A. B., 1999. Integrating New and Classical Techniques. In: Castro, A., Fernandez, C., Vigneresse, J. L., eds., Understanding Granites. Geol. Soc. London Special Publ., 158: 7–25

    Google Scholar 

  • Thybo, H., Nielsen, C. A., 2009. Magma-Compensated Crustal Thinning in Continental Rift Zones. Nature, 457(7231): 873–876. doi:10.1038/nature07688

    Article  Google Scholar 

  • Thybo, H., Artemieva, I. M., 2013. Moho and Magmatic Underplating in Continental Lithosphere. Tectonophysics, 609(8): 605–619. doi:10.1016/j.tecto.2013.05.032

    Article  Google Scholar 

  • Unsworth, M. J., Jones, A. G., Wei, W., et al., 2005. Crustal Rheology of the Himalaya and Southern Tibet Inferred from Magnetotelluric Data. Nature, 438(7064): 78–81. doi:10.1038/nature04154

    Article  Google Scholar 

  • van den Berg, A. P. V. D., Yuen, D. A., 2002. Delayed Cooling of the Earth’s Mantle due to Variable Thermal Conductivity and the Formation of a Low Conductivity Zone. Earth and Planetary Science Letters, 199(3/4): 403–413. doi:10.1016/s0012-821x(02)00531-9

    Article  Google Scholar 

  • Wei, W. B., Jin, S., Ye, G. F., et al., 2006. Conductivity Structure of Crust and Upper Mantle beneath the Northern Tibetan Plateau: Results of Super-Wide Band Magnetotelluric Sounding. Chinese J. Geophys., 49: 1215–1225 (in Chinese with English Abstract)

    Google Scholar 

  • Wei, W., Unsworth, M., Jones, A. G., et al., 2001. Detection of Widespread Fluids in the Tibetan Crust by Magnetotelluric Studies. Science, 292(5517): 716–719. doi:10.1126/science.1010580

    Article  Google Scholar 

  • Whittington, A. G., Hofmeister, A. M., Nabelek, P. I., 2009. Temperature-Dependent Thermal Diffusivity of the Earth’s Crust and Implications for Magmatism. Nature, 458(7236): 319–321. doi:10.1038/nature07818

    Article  Google Scholar 

  • Yang, W. C., 2009. The Crust and Upper Mantle of the Sulu UHPM Belt. Tectonophysics, 475(2): 226–234. doi:10.1016/j.tecto.2009.02.048

    Article  Google Scholar 

  • Yuan, X. C., Klemperer, S. L., Tang, W., et al., 2003. Crustal Structure and Exhumation of the Dabie Shan Ultrahigh-Pressure Orogen, Eastern China, from Seismic Reflection Profiling. Geology, 31: 435–438. doi:10.1130/0091-7613(2003)031<0435:csaeot>2.0.co;2

    Article  Google Scholar 

Download references

Acknowledgments

We thank Prof. Alan Green at ETH for refining the English text. This study was supported by the National Natural Science Foundation of China (Nos. 41530319, 41374079, 41374060), and the State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences (No. MSFGPMR201309). Data in Table 1 of was from references and can be obtained in public domain. Data supporting Figs. 1–4 can be easily reproduced from the method described in detail by Furlong and Chapman (2013). The final publication is available at Springer via http://dx.doi.org/10.1007/s12583-017-0744-6.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qinyan Wang.

Additional information

Yixian Xu: http://orcid-org/0000-0002-1864-2058

Qinyan Wang: http://orcid-org/0000-0002-4591-6616

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Y., Zhu, L., Wang, Q. et al. Heat shielding effects in the Earth’s crust. J. Earth Sci. 28, 161–167 (2017). https://doi.org/10.1007/s12583-017-0744-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12583-017-0744-6

Keywords

Navigation