Skip to main content
Log in

High-frequency Rayleigh-Wave method

  • Published:
Journal of Earth Science Aims and scope Submit manuscript

Abstract

High-frequency (≥2 Hz) Rayleigh-wave data acquired with a multichannel recording system have been utilized to determine shear (S)-wave velocities in near-surface geophysics since the early 1980s. This overview article discusses the main research results of high-frequency surface-wave techniques achieved by research groups at the Kansas Geological Survey and China University of Geosciences in the last 15 years. The multichannel analysis of surface wave (MASW) method is a non-invasive acoustic approach to estimate near-surface S-wave velocity. The differences between MASW results and direct borehole measurements are approximately 15% or less and random. Studies show that simultaneous inversion with higher modes and the fundamental mode can increase model resolution and an investigation depth. The other important seismic property, quality factor (Q), can also be estimated with the MASW method by inverting attenuation coefficients of Rayleigh waves. An inverted model (S-wave velocity or Q) obtained using a damped least-squares method can be assessed by an optimal damping vector in a vicinity of the inverted model determined by an objective function, which is the trace of a weighted sum of model-resolution and model-covariance matrices. Current developments include modeling high-frequency Rayleigh-waves in near-surface media, which builds a foundation for shallow seismic or Rayleigh-wave inversion in the time-offset domain; imaging dispersive energy with high resolution in the frequency-velocity domain and possibly with data in an arbitrary acquisition geometry, which opens a door for 3D surface-wave techniques; and successfully separating surface-wave modes, which provides a valuable tool to perform S-wave velocity profiling with high-horizontal resolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References Cited

  • Abbiss, C. P., 1981. Shear Wave Measurements of the Elasticity of the Ground. Géotechnique, 31(1): 91–104

    Article  Google Scholar 

  • Babuska, V., Cara, M., 1991. Seismic Anisotropy in the Earth. Kluwer Academic Publishers, Boston. 217

    Google Scholar 

  • Backus, G. E., Gilbert, J. F., 1970. Uniqueness in the Inversion of Inaccurate Gross Earth Data. Phil. Trans. Roy. Soc. London, Ser., A, 266: 123–192

    Article  Google Scholar 

  • Beaty, K. S., Schmitt, D. R., Sacchi, M., 2002. Simulated Annealing Inversion of Multimode Rayleigh-Wave Dispersion Curves for Geological Structure. Geophys. J. Int., 151(2): 622–631

    Article  Google Scholar 

  • Calderón-Macías, C., Luke, B., 2007. Addressing Nonuniqueness in Inversion of Rayleigh-Wave Data for Shallow Profiles Containing Stiff Layers. Geophysics, 72(1): U1–U10

    Article  Google Scholar 

  • Chen, C., Liu, J., Xia, J., et al., 2006. Integrated Geophysical Techniques in Detecting Hidden Dangers in River Embankments. Journal of Environmental and Engineering Geophysics, 11(2): 83–94

    Article  Google Scholar 

  • Clayton, C. R. I., 1993. The Standard Penetration Test (SPT): Methods and Use: Construction Industry Research and Information Association. Funder Report CP/7, London. 129

  • Clayton, C. R. I., Matthews, M. C., Simons, N. E., 1995. Site Investigation. Blackwell Science, Oxford. 584

    Google Scholar 

  • Coruh, C., 1985. Stretched Automatic Amplitude Adjustment of Seismic Data. Geophysics, 50(2): 252–256

    Article  Google Scholar 

  • Dobry, R., Borcherdt, R. D., Crouse, C. B., et al., 2000. New Site Coefficients and Site Classification System Used in Recent Building Seismic Code Provisions. Earthquake Spectra, 16(11): 41–67

    Article  Google Scholar 

  • Dorman, J., Ewing, M., 1962. Numerical Inversion of Seismic Surface Wave Dispersion Data and Crust-Mantle Structure in the New York-Pennsylvania Area. Journal of Geophysical Research, 67(9): 3554

    Google Scholar 

  • Forbriger, T., 2003. Inversion of Shallow-Seismic Wavefields: I. Wavefield Transformation. Geophys. J. Int., 153(3): 719–734

    Article  Google Scholar 

  • Garland, G. D., 1979. Introduction to Geophysics: Mantle, Core and Crust. 2nd Edition. W. B. Saunders Company, Philadelphia. 494

    Google Scholar 

  • Imai, T., Tonouchi, K., 1982. Correlation of N-Value with S-Wave Velocity and Shear Modulus. Proceedings of the Second European Symposium on Penetration Testing. 67–72

  • Ivanov, J., Miller, R. D., Lacombe, P., et al., 2006a. Delineating a Shallow Fault Zone and Dipping Bedrock Strata Using Multichannal Analysis of Surface Waves with a Land Streamer. Geophysics, 71(5): A39–A42

    Article  Google Scholar 

  • Ivanov, J., Miller, R. D., Xia, J., et al., 2006b. Joint Analysis of Refractions with Surface Waves: An Inverse Solution to the Refraction-Traveltime Problem. Geophysics, 71(6): R131–R138

    Article  Google Scholar 

  • Jin, S., Cambois, G., Vuilermoz, C., 2000. Shear-Wave Velocity and Density Estimation from PS-Wave AVO Analysis: Application to an OBS Dataset from the North Sea. Geophysics, 65(5): 1446–1454

    Article  Google Scholar 

  • Liang, Q., Chen, C., Zeng, C., et al., 2008. Inversion Stability Analysis of Multimode Rayleigh Wave Dispersion Curves Using Low-Velocity-Layer Models. Near Surface Geophysics, 6(3): 157–165

    Google Scholar 

  • Lu, L., Wang, C., Zhang, B., 2007. Inversion of Multimode Rayleigh Waves in the Presence of a Low Velocity Layer: Numerical and Laboratory Study. Geophys. J. Int., 168(3): 1235–1246

    Article  Google Scholar 

  • Luo, Y., Xia, J., Liu, J., et al., 2007. Joint Inversion of High-Frequency Surface Waves with Fundamental and Higher Modes. Journal of Applied Geophysics, 62(4): 375–384

    Article  Google Scholar 

  • Luo, Y., Xia, J., Miller, R. D., et al., 2008a. Rayleigh-Wave Dispersive Energy Imaging by High-Resolution Linear Radon Transform. Pure and Applied Geophysics, 165(5): 903–922

    Article  Google Scholar 

  • Luo, Y., Xia, J., Liu, J., et al., 2008b. Generation of a Pseudo-2D Shear-Wave Velocity Section by Inversion of a Series of 1D Dispersion Curves. Journal of Applied Geophysics, 64(3–4): 115–124

    Article  Google Scholar 

  • Luo, Y., Xia, J., Miller, R. D., et al., 2008c. Rayleigh-Wave Dispersive Energy Imaging and Mode Separating by High-Resolution Linear Radon Transform. Proceedings of the 2008 International Conference on Environmental and Engineering Geophysics (ICEEG), June 15–20, Wuhan, China. 81–86

  • Luo, Y., Xia, J., Xu, Y., et al., 2008d. Rayleigh-Wave Dispersive Energy Imaging and Mode Separating by High-Resolution Linear Radon Transform. The Leading Edge, 27(11): 1536–1542

    Article  Google Scholar 

  • Luo, Y., Xia, J., Liu, J., et al., 2009a. Research on the Middle-of-Receiver-Spread Assumption of the MASW Method. Soil Dynamics and Earthquake Engineering, 29(1): 71–79

    Article  Google Scholar 

  • Luo, Y., Xia, J., Xu, Y., et al., 2009b. Dipping Interface Mapping Using Mode-Separated Rayleigh Waves. Pure and Applied Geophysics, 166(3): 353–374

    Article  Google Scholar 

  • Marquardt, D. W., 1963. An Algorithm for Least Squares Estimation of Nonlinear Parameters. Jour. Soc. Indus. Appl. Math., 2: 431–441

    Article  Google Scholar 

  • Matthews, M. C., Hope, V. S., Clayton, C. R. I., 1996. The Use of Surface Waves in the Determination of Ground Stiffness Profiles. Proc. Instn. Civ. Engrs., Geotechnical Engineering, 119: 84–95

    Google Scholar 

  • Mayne, W. H., 1962. Horizontal Data Stacking Techniques. Supplement to Geophysics, 27: 927–937

    Google Scholar 

  • McMechan, G. A., Yedlin, M. J., 1981. Analysis of Dispersive Waves by Wave Field Transformation. Geophysics, 46(6): 869–874

    Article  Google Scholar 

  • Menke, W., 1984. Geophysical Data Analysis-Discrete Inversion Theory. Academic Press, Inc., New York. 260

    Google Scholar 

  • Miller, R. D., Xia, J., 1999. Feasibility of Seismic Techniques to Delineate Dissolution Features in the Upper 600 ft at Alabama Electric Cooperative’s Proposed Damascus Site, Interim Report. Kansas Geological Survey, Open-File Report 99-3

  • Miller, R. D., Xia, J., Park, C. B., et al., 1999. Multichannel Analysis of Surface Waves to Map Bedrock. The Leading Edge, 18: 1392–1396

    Article  Google Scholar 

  • Minster, J. B., Jordan, T. J., Molnar, P., et al., 1974. Numerical Modeling of Instantaneous Plate Tectonics. Geophys. J. Roy. Astron. Soc., 36: 541–576

    Google Scholar 

  • Moro, G. D., Pipan, M., Forte, E., et al., 2003. Determination of Rayleigh Wave Dispersion Curves for Near Surface Applications in Unconsolidated Sediments. Technical Program with Biographies, the 73rd Annual Meeting of the Society of Exploration Geophysicists, Dallas, TX. 1247–1250

  • Nazarian, S., Stokoe, K. H. II, Hudson, W. R., 1983. Use of Spectral Analysis of Surface Waves Method for Determination of Moduli and Thicknesses of Pavement Systems. Transportation Research Record, (930): 38–45

  • Park, C. B., Miller, R. D., Xia, J., 1998. Imaging Dispersion Curves of Surface Waves on Multi-channel Record. Technical Program with Biographies, the 68th Annual Meeting of the Society of Exploration Geophysicists, New Orleans, Louisiana. 1377–1380

  • Park, C. B., Miller, R. D., Xia, J., 1999. Multi-Channel Analysis of Surface Waves. Geophysics, 64(3): 800–808

    Article  Google Scholar 

  • Putnam, N., Nasseri-Moghaddam, A., Kovin, O., et al., 2008. Preliminary Analysis Using Surface Wave Methods to Detect Shallow Manmade Tunnels. Symposium on the Application of Geophysics to Environmental and Engineering Problems (SAGEEP), Annual Meeting of the Environmental and Engineering Geophysical Society (EEGS), April 6–10, 2008, Philadelphia, PA. 679–688

  • Rix, G. J., Leipski, A. E., 1991. Accuracy and Resolution of Surface Wave Inversion: Recent Advances in Instrumentation, Data Acquisition and Testing in Soil Dynamics. Geotechnical Special Publication, 29: 17–32

    Google Scholar 

  • Rix, G. J., Lai, C. D., Spang, A. W. Jr., 2000. In Situ Measurement of Damping Ratio Using Surface Waves. Journal of Geotechnical and Geoenvironmental Engineering, 126(5): 472–480

    Article  Google Scholar 

  • Sabetta, F., Bommer, J., 2002. Modification of the Spectral Shapes and Subsoil Conditions in Eurocode 8. 12th European Conference on Earthquake Engineering: Paper Ref. 518

  • Schwab, F. A., Knopoff, L., 1972. Fast Surface Wave and Free Mode Computations. In: Bolt, B. A., ed., Methods in Computational Physics. Academic Press, New York. 87–180

    Google Scholar 

  • Sêcoe, E., Pinto, P. S., 2002. Eurocode 8-Design Provisions for Geotechnical Structures. Special Lecture, 3rd Croatian Soil Mechanics and Geotechnical Engineering Conference, 2002 Hvar. CD-ROM

  • Sheriff, R. E., 2002. Encyclopedic Dictionary of Applied Geophysics. 4th Ed.. Society of Exploration Geophysicists, Tulsa, OK. 429

    Google Scholar 

  • Sheriff, R. E., Geldart, L. P., 1983. Exploration Seismology (Volume 1): History, Theory, and Data Acquisition. Cambridge University Press, New York. 253

    Google Scholar 

  • Song, X., Gu, H., 2007. Utilization of Multimode Surface Wave Dispersion for Characterizing Roadbed Structure. Journal of Applied Geophysics, 63(2): 59–67

    Article  Google Scholar 

  • Song, Y. Y., Castagna, J. P., Black, R. A., et al., 1989. Sensitivity of Near-Surface Shear-Wave Velocity Determination from Rayleigh and Love Waves. Technical Program with Biographies, the 59th Annual Meeting of the Society of Exploration Geophysicists, 59: 509–512

    Google Scholar 

  • Steeples, D. W., Baker, G. S., Schmeissner, C., 1999. Toward the Autojuggie: Planting 72 Geophones in 2 Sec. Geophysical Research Letters, 26(8): 1085–1088

    Article  Google Scholar 

  • Stokoe, K. H. II, Nazarian, S., 1983. Effectiveness of Ground Improvement from Spectral Analysis of Surface Waves. Proceeding of the Eighth European Conference on Soil Mechanics and Foundation Engineering, 1: 91–95

    Google Scholar 

  • Stokoe, K. H. II, Wright, G. W., Bay, J. A., et al., 1994. Characterization of Geotechnical Sites by SASW Method. Geophysical Characterization of Sites. In: Woods, R. D., ed., ISSMFE Technical Committee #10, New Delhi. Oxford Publishers, Oxford. 15–25

    Google Scholar 

  • Tian, G., Steeples, D. W., Xia, J., et al., 2003a. Useful Resorting in Surface Wave Method with the Autojuggie. Geophysics, 68(6): 1906–1908

    Article  Google Scholar 

  • Tian, G., Steeples, D. W., Xia, J., et al., 2003b. Multichannel Analysis of Surface Wave Method with the Autojuggie. Soil Dynamics and Earthquake Engineering, 23(3): 243–247

    Article  Google Scholar 

  • Tokimatsu, K., Kuwayama, S., Tamura, S., et al., 1991. V s Determination from Steady State Rayleigh Wave Method. Soils and Foundations, 31(2): 153–163

    Google Scholar 

  • Vardoulakis, I., Verttos, C., 1988. Dispersion Law of Rayleigh-Type Waves in a Compressible Gibson Half-Space. International Journal for Numerical and Analytical Methods in Geomechanics, 12(6): 639–655

    Article  Google Scholar 

  • Xia, J., Miller, R. D., Park, C. B., 1998. Construction of Vertical Section of Near-Surface Shear-Wave Velocity from Ground Roll. Technical Program, the Society of Exploration Geophysicists and the Chinese Petroleum Society Beijing 98’ International Conference. 29–33

  • Xia, J., Miller, R. D., Park, C. B., 1999. Estimation of Near-Surface Shear-Wave Velocity by Inversion of Rayleigh Wave. Geophysics, 64(3): 691–700

    Article  Google Scholar 

  • Xia, J., Miller, R. D., Park, C. B., 2000. Advantages of Calculating Shear-Wave Velocity from Surface Waves with Higher Modes. Technical Program with Biographies, the 70th Annual Meeting of the Society of Exploration Geophysicists, 70: 1295–1298

    Google Scholar 

  • Xia, J., Miller, R. D., Park, C. B., et al., 2002a. Comparing Shear-Wave Velocity Profiles Inverted from Multichannel Analysis of Surface Wave with Borehole Measurements. Soil Dynamics and Earthquake Engineering, 22(3): 181–190

    Article  Google Scholar 

  • Xia, J., Miller, R. D., Park, C. B., et al., 2002b. A Pitfall in Shallow Shear-Wave Refraction Surveying. Journal of Applied Geophysics, 51(1): 1–9

    Article  Google Scholar 

  • Xia, J., Miller, R. D., Park, C. B., et al., 2002c. Determining Q of Near-Surface Materials from Rayleigh Waves. Journal of Applied Geophysics, 51(2–4): 121–129

    Article  Google Scholar 

  • Xia, J., Miller, R. D., Park, C. B., et al., 2003. Inversion of High Frequency Surface Waves with Fundamental and Higher Modes. Journal of Applied Geophysics, 52(1): 45–57

    Article  Google Scholar 

  • Xia, J., Chen, C., Li, P. H., et al., 2004a. Delineation of a Collapse Feature in a Noisy Environment Using a Multichannel Surface Wave Technique. Géotechnique, 54(1): 17–27

    Article  Google Scholar 

  • Xia, J., Miller, R. D., Park, C. B., et al., 2004b. Utilization of High-Frequency Rayleigh Waves in Near-Surface Geophysics. The Leading Edge, 23(8): 753–759

    Article  Google Scholar 

  • Xia, J., Chen, C., Tian, G., et al., 2005. Resolution of High-Frequency Rayleigh-Wave Data. Journal of Environmental and Engineering Geophysics, 10(2): 99–110

    Article  Google Scholar 

  • Xia, J., Xu, Y., Chen, C., et al., 2006a. Simple Equations Guide High-Frequency Surface-Wave Investigation Techniques. Soil Dynamics and Earthquake Engineering, 26(5): 395–403

    Article  Google Scholar 

  • Xia, J., Xu, Y., Miller, R. D., et al., 2006b. Estimation of Elastic Moduli in a Compressible Gibson Half-Space by Inverting Rayleigh Wave Phase Velocity. Surveys in Geophysics, 27(1): 1–17

    Article  Google Scholar 

  • Xia, J., Xu, Y., Miller, R. D., 2007a. Generating Image of Dispersive Energy by Frequency Decomposition and Slant Stacking. Pure and Applied Geophysics, 164(5): 941–956

    Article  Google Scholar 

  • Xia, J., Nyquist, J. E., Xu, Y., et al., 2007b. Feasibility of Detecting Near-Surface Feature with Rayleigh-Wave Diffraction. Journal of Applied Geophysics, 62(3): 244–253

    Article  Google Scholar 

  • Xia, J., Miller, R. D., Xu, Y., 2008a. Data-Resolution Matrix and Model-Resolution Matrix for Rayleigh-Wave Inversion Using a Damped Least-Square Method. Pure and Applied Geophysics, 165(7): 1227–1248

    Article  Google Scholar 

  • Xia, J., Xu, Y., Miller, R. D., 2008b. Improvement and Assessment of a Damped Least-Square Solution of Rayleigh-Wave Inversion. Proceedings of the 2008 International Conference on Environmental and Engineering Geophysics (ICEEG), June 15–20, Wuhan, China. 20–28

  • Xu, Y., Xia, J., Miller, R. D., 2006. Quantitative Estimation of Minimum Offset for Multichannel Surface-Wave Survey with Actively Exciting Source. Journal of Applied Geophysics, 59(2): 117–125

    Article  Google Scholar 

  • Xu, Y., Xia, J., Miller, R. D., 2007. Numerical Investigation of Implementation of Air-Earth Boundary by Acoustic-Elastic Boundary Approach. Geophysics, 72(5): SM147–SM153

    Article  Google Scholar 

  • Xu, Y., Xia, J., Miller, R. D., 2009. Approximation to Cutoffs of Higher Modes of Rayleigh Waves for a Layered Earth Model. Pure and Applied Geophysics, 166(3): 339–351

    Article  Google Scholar 

  • Yilmaz, Ö., 1987. Seismic Data Processing. Society of Exploration Geophysicists, Tulsa, OK. 526

    Google Scholar 

  • Yilmaz, Ö., Eser, M., Berilgen, M., 2006. A Case Study of Seismic Zonation in Municipal Areas. The Leading Edge, 25(3): 319–330

    Article  Google Scholar 

  • Zhang, S. X., Chan, L. S., Xia, J., 2004. The Selection of Field Acquisition Parameters for Dispersion Images from Multichannel Surface Wave Data. Pure and Applied Geophysics, 161: 185–201

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianghai Xia.

Additional information

This study was supported by Kansas Geological Survey, The University of Kansas and China University of Geosciences.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xia, J., Miller, R.D., Xu, Y. et al. High-frequency Rayleigh-Wave method. J. Earth Sci. 20, 563–579 (2009). https://doi.org/10.1007/s12583-009-0047-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12583-009-0047-7

Key Words

Navigation