Skip to main content
Log in

A mathematical model for the distribution of hemodynamic parameters in the human retinal microvascular network

  • Original Article
  • Published:
Journal of Biorheology

Abstract

To quantitatively assess the arteriovenous distribution of hemodynamic parameters throughout the microvascular network of the human retina, we constructed a retinal microcirculatory model consisting of a dichotomous symmetric branching system. This system is characterized by a diameter exponent of 2.85, instead of 3 as dictated by Murray’s law, except for the capillary networks. The value of 2.85 was the sum of a fractal dimension (1.70) and a branch exponent (1.15) of the retinal vasculature. Following the feeding artery (central retinal artery), each bifurcation was recursively developed at a distance of an individual branch length [L(r) = 7.4r 1.15] by a centrifugal scheme. The venular tree was formed in the same way. Using this model, we evaluated hemodynamic parameters, including blood pressure, blood flow, blood velocity, shear rate, and shear stress, within the retinal microcirculatory network as a function of vessel diameter. The arteriovenous distributions of blood pressure and velocity in the simulation were consistent with in vivo measurements in the human retina and other vascular beds of small animals. We therefore conclude that the current theoretical model was useful for quantifying hemodynamics as a function of vessel diameter within the retinal microvascular network.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Murray CD. The physiological principle of minimum work I. The vascular system and the cost of blood volume. Proc Natl Acad Sci USA. 1926;12:207–14.

    Article  ADS  Google Scholar 

  2. Sherman TF. On concerning large vessels to small: the meaning of Murray’s law. J Gen Physiol. 1981;78:431–53.

    Article  Google Scholar 

  3. Kamiya A, Bukhari R, Togawa T. Adaptive regulation of wall shear stress optimizing vascular tree function. Bull Math Biol. 1984;46:127–37.

    Google Scholar 

  4. Kamiya A, Togawa T. Adaptive regulation of wall shear stress to flow change in the canine artery. Am J Physiol. 1980;239:H14–21.

    Google Scholar 

  5. Kamiya A, Takahashi T. Quantitative assessments of morphological and functional properties of biological trees based on their fractal nature. J Appl Physiol. 2007;102:2315–23.

    Article  Google Scholar 

  6. Fåhraeus R, Lindqvist T. The viscosity of the blood in narrow capillary tubes. Am J Physiol. 1931;96:562–8.

    Google Scholar 

  7. Wong TY, Klein R, Klein BEK, Tielsch JM, Hubbard L, Nieto FJ. Retinal microvascular abnormalities and their relationship with hypertension, cardiovascular disease, and mortality. Surv Ophthalmol. 2001;46:59–80.

    Article  Google Scholar 

  8. Patton N, Aslam T, MacGillivray T, Pattie A, Deary IJ, Dhillon B. Retinal vascular image analysis as a potential screening tool for cerebrovascular disease: a rationale based on homology between cerebral and retinal microvasculatures. J Anat. 2005;206:319–48.

    Article  Google Scholar 

  9. Nagaoka T, Yoshida A. Noninvasive evaluation of wall shear stress on retinal microcirculation in humans. Invest Opthalmol Vis Sci. 2006;47:1113–9.

    Article  Google Scholar 

  10. Suwa N, Takahashi T. Morphological and morphometrical analysis of circulation in hypertension and ischemic kidney. Munich: Urban & Schwarzenberg; 1971.

    Google Scholar 

  11. Mandelbrot BB. The fractal geometry of nature. New York: Freeman; 1983.

    Google Scholar 

  12. Bassingthwaite JB, Liebovitch LS, West BJ. Fractal physiology. Oxford: Oxford University Press; 1994.

    Google Scholar 

  13. Masters BR. Fractal analysis of normal human retinal blood vessels. Fractals. 1994;2:103–10.

    Article  Google Scholar 

  14. Amemiya T. Retinal and choroidal vascular changes and systemic diseases in rats. Tokyo: Springer; 2003.

    Google Scholar 

  15. Haynes RH. Physical basis of the dependence of blood viscosity on tube radius. Am J Physiol. 1960;198:1193–200.

    Google Scholar 

  16. Chien S, Usami S, Skalak R. Blood flow in small tubes. In: Renkin EM, Michel CC, editors. Handbook of physiology. The cardiovascular system, microcirculation. Bethesda: American Physiological Society; 1984. p. 217–49.

    Google Scholar 

  17. Bill A. Circulation of the eye. In: Renkin EM, Michel CC, editors. Handbook of physiology. The cardiovascular system, microcirculation. Bethesda: American Physiological Society; 1984. p. 1001–34.

    Google Scholar 

  18. Glucksberg MR, Dunn R. Direct measurement of retinal microvascular pressures in the live, anesthetized cat. Microvasc Res. 1993;45:158–65.

    Article  Google Scholar 

  19. Zamir M, Medeiros JA. Arterial branching in man and monkey. J Gen Physiol. 1982;79:353–60.

    Article  Google Scholar 

  20. Rossitti S, Frisén L. Remodelling of the retinal arterioles in descending optic atrophy follows the principle of minimum work. Acta Physiol Scand. 1994;152:333–40.

    Article  Google Scholar 

  21. Skalak R, Özkaya N. Biofluid mechanics. Annu Rev Fluid Mech. 1989;21:167–204.

    Article  ADS  Google Scholar 

  22. Fung YC. Biomechanics: circulation. New York: Springer; 1996.

    Google Scholar 

  23. Riva CE, Grunwald JE, Sinclair SH, Petring BL. Blood velocity and volumetric flow rate in human retinal vessels. Invest Ophthalmol Vis Sci. 1985;26:1124–32.

    Google Scholar 

  24. Fronek K, Zweifach BW. Microvascular pressure distribution in skeletal muscle and the effect of vasodilation. Am J Physiol. 1975;228:791–6.

    Google Scholar 

  25. Zweifach BW, Lipowsky HH. Quantitative studies of microvascular structure and function III. Microvascular hemodynamics of cat mesentery and rabbit omentum. Circ Res. 1977;41:380–90.

    Google Scholar 

  26. Zweifach BW, Kovalcheck S, DeLano F, Chen P. Micropressure-flow relationships in a skeletal muscle of spontaneously hypertensive rats. Hypertension. 1981;3:601–14.

    Google Scholar 

  27. Zweifach BW. Quantitative studies of microvascular structure and function I. Analysis of pressure distribution in the terminal vascular bed in cat mesentery. Circ Res. 1974;34:843–57.

    Google Scholar 

  28. Takahashi T, Okada A, Saitoh T, Hayano J, Miyamoto Y. Difference in human cardiovascular response between upright and supine recovery from upright cycle exercise. Eur J Appl Physiol. 2000;81:233–9.

    Article  Google Scholar 

  29. Landis EM, Pappenheimer JR. Exchange of substances through the capillary walls. In: Hamilton WF, editor. Handbook of physiology. Circulation. Washington D.C.: American Physiological Society; 1963. p. 961–1034.

    Google Scholar 

  30. Dorner GT, Garhofer G, Kiss B, Polska E, Polak K, Riva CE, et al. Nitric oxide regulation retinal vascular tone in humans. Am J Physiol. 2003;285:H631–6.

    Google Scholar 

  31. Kuo L, Davis MJ, Chilian WM. Longitudinal gradients for endothelium-dependent and -independent vascular responses in the coronary microcirculation. Circulation. 1995;92:518–25.

    Google Scholar 

  32. Yuan Y, Granger HJ, Zawieja DC, Chilian WM. Flow modulates coronary venular permeability by a nitric oxide-related mechanism. Am J Physiol. 1992;263:H641–6.

    Google Scholar 

  33. Kubes P, Suzuki M, Granger DN. Nitric oxide: an endogenous modulator of leukocyte adhesion. Proc Natl Acad Sci USA. 1991;88:4651–5.

    Article  ADS  Google Scholar 

  34. Van Beek JHGM, Roger SA, Bassingthwaighte JB. Regional myocardial flow heterogeneity explained with fractal networks. Am J Physiol. 1989;257:H1670–80.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tatsuhisa Takahashi.

About this article

Cite this article

Takahashi, T., Nagaoka, T., Yanagida, H. et al. A mathematical model for the distribution of hemodynamic parameters in the human retinal microvascular network. J Biorheol 23, 77–86 (2009). https://doi.org/10.1007/s12573-009-0012-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12573-009-0012-1

Keywords

Navigation