Skip to main content
Log in

Morphological development of testes in ostrich (Struthio camelus) embryo

  • Original Article
  • Published:
Anatomical Science International Aims and scope Submit manuscript

Abstract

Although the histological structure of ostrich testis has been studied, very little information is currently available on the embryonic development of this organ. The aim of this study was to determine the sequence of the histological changes in diverse components of the testis in ostrich embryo from embryonic day (E) 20 to E42. The main findings were categorized into four histological features, i.e., development of sex cords, interstitial tissue and rete ducts, and the appearance of defective septa. While the lumen of sex cords, tunica albuginea, capsular rete ducts and Leydig cell precursors appeared at E26, the filum-shaped defective septa were visible at E36. The emersion of the lumen in the primary sex cords and formation of capsular rete ducts in the ostrich embryo is considerably different from that in other birds. However, tunica albuginea and Leydig cell precursors appeared in a similar pattern to those of other birds. An interesting observation was that the primordial germ cell (PGC)-like cells were completely distinct, while the capsular rete ducts were formed by trapping of some Sertoli cell aggregations in the tunica albuginea. This suggests that similar to the primary sex cords, the capsular rete ducts may originate from the Sertoli cell aggregations which had corralled some PGCs. Stereological estimations in the ostrich embryo testis showed the major proportion of testis is occupied by the seminiferous tubules, which is unlike the fowl embryo testis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Aire TA (1982) The rete testis of birds. J Anat 135(1):97–110

    CAS  PubMed Central  PubMed  Google Scholar 

  • Aire TA, Soley JT (2003) The morphological features of the rete testis of the ostrich (Struthio camelus). Anat Embryol 207:355–361

    Article  CAS  PubMed  Google Scholar 

  • Barker SG, Kendall MD (1984) A study of the rete testis epithelium in several wild birds. J Anat 138(1):139–152

    PubMed Central  PubMed  Google Scholar 

  • Black VH, Christensen AK (1969) Differentiation of interstitial cells and Sertoli cells in fetal guinea pig testes. Am J Anat 124(2):211–237

    Article  CAS  PubMed  Google Scholar 

  • Budras KD, Meier U (1981) The epididymis and its development in ratite birds (ostrich, emu, rhea). Anat Embryol (Berl) 162(3):281–299

    Article  CAS  Google Scholar 

  • Chang G, Chen R, Qin Y, Zhang Y, Dai A, Chen G (2012) The development of primordial germ cells (PGCs) and Testis in the Quail Embryo. Pak Vet J 32(1):88–92

    Google Scholar 

  • Christensen AK, Fawcett DW (1961) The normal fine structure of opossum testicular interstitial cells. J Biophys Biochem Cytol 9:653–670

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Connell CJ (1972) The effect of luteinizing hormone on the ultrastructure of the Leydig cell of the chick. Z Zellforsch 128:139–151

    Article  CAS  PubMed  Google Scholar 

  • Csaba G, Shahin MA, Dobozy O (1980) The overlapping effect of gonadotropins and TSH on embryonic chicken gonads. Arch Anat Histol Embryol 63:31–38

    CAS  PubMed  Google Scholar 

  • Davis JR, Langford GA, Kirby PJ (1970) The testicular capsule. In: Johnson AD, Gomes WR, Vandemark NL (eds) The testis development, anatomy and physiology. Academic Press, London, pp 281–337

    Chapter  Google Scholar 

  • DeFalco T, Takahashi S, Capel B (2011) Two distinct origins for Leydig cell progenitors in the fetal testis. Dev Biol 352:14–26

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Delesse A (1848) Procédé mécanique pour déterminer la composition des roches. Ann Min 13:379–388

    Google Scholar 

  • Eidelman AI, Schanler RJ, Johnston M, Landers S, Noble L, Szucs K, Viehmann L (2012) Breastfeeding and the use of human milk. Pediatrics 129:e827–e841

    Article  Google Scholar 

  • Eurell JA, Van Sickle DC (2006) Connective and supportive tissues. In: Eurell JA, Frappier BL (eds) Dellmann’s textbook of veterinary histology. Wiley-Blackwell, London, p 37

    Google Scholar 

  • Fujimoto T, Ukeshima A, Kiyofuji R (1976) The origin, migration and morphology of the primordial germ cells in the chick embryo. Anat Rec 185(2):139–145

    Article  CAS  PubMed  Google Scholar 

  • Gefen E, Ar A (2001) Morphological description of the developing ostrich embryo: a tool for embryonic age estimation. Isr J Zool 47:87–97

    Article  Google Scholar 

  • Ginsburg M, Eyal-Giladi H (1986) Temporal and spatial aspects of the gradual migration of primordial germ cells from the epiblast into the germinal crescent in the avian embryo. J Embryol Exp Morphol 95:53–71

    CAS  PubMed  Google Scholar 

  • Gonzalez-moran G (1997) A stereological study of the different cell populations in chicken testes treated with follicle-stimulating hormone during embryonic development. Anat Histol Embryol 26:311–317

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez-Moran MG (2011) Histological and stereological changes in growing and regressing chicken ovaries during development. Anat Rec 294:893–904

    Article  Google Scholar 

  • Gonzalez-Moran MG, Soria-Castro E (2010a) Changes in the tubular compartment of the testis of Gallus domesticus during development. Br Poult Sci 51:296–307

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez-Moran MG, Soria-Castro E (2010b) Histological and stereological studies on Leydig cells in the testes of Gallus domesticus from pre-hatching to sexual maturity. Anim Reprod Sci 120(1–4):129–135

    Article  PubMed  Google Scholar 

  • Hassanzadeh B, Nabipour A, Rassouli M, Dehghani H (2013) Microanatomical study of testis in juvenile ostrich (Struthio camelus). Anat Sci Int 88(3):134–140

    Article  PubMed  Google Scholar 

  • Hodges RD (1974) The histology of the fowl. Academic Press, London

    Google Scholar 

  • Howard V, Reed MG (2005) Unbiased stereology: three-dimensional measurement in microscopy. Garland Science/BIOS Scientific Publishers, New York

    Google Scholar 

  • Ishiguru S, Minematsu T, Naito M, Kanai Y, Tajima A (2009) Migratory ability of chick primordial germ cells transferred into quail embryos. J Reprod Dev 55(2):183–186

    Article  Google Scholar 

  • Jordanov J, Angelova P, Boyadjieva-Michailova A, Bakalska M (1978) Ultrastructure of developing interstitial cells in chick embryonic gonad in relation to their genesis and steroidogenic function. Z Mikrosk Anat Forsch 92(3):449–464

    CAS  PubMed  Google Scholar 

  • Kuo J (2007) Electron microscopy methods and protocols. Humana Press, Totowa

    Book  Google Scholar 

  • Lake PE (1971) The male in reproduction. In: Bell DJ, Freeman BM (eds) Physiology and biochemistry of the domestic fowl. Academic Press, London, pp 1411–1447

    Google Scholar 

  • Lan W, Ke-mei P, Lai-qiang L, Hui S, Yan W, Sheng-he L, Li T, An-na D, Er-hui J, Jia-xiang W (2007) Morphological study on the reproductive organs of the male ostrich chicks. Acta Vet Zootech Sinica 38(8):851–855

    Google Scholar 

  • Madekurozwa M-C, Chabvepi TS, Matema S, Teerds KJ (2002) Relationship between seasonal changes in spermatogenesis in the juvenile ostrich (Stuthio camelus) and the presence of the LH receptor and 3b-hydroxysteroid dehydrogenase. Reproduction 123(5):735–742

    Article  CAS  PubMed  Google Scholar 

  • Malago W Jr, Franco HM, Matheucci E Jr, Medaglia A, Henrique-Silva F (2002) Large scale sex typing of ostriches using DNA extracted from feathers. BMC Biotechnol 2:19

    Article  PubMed Central  PubMed  Google Scholar 

  • Malecki IA, Horbanczuk JO, Reed CE, Martin GB (2005) The ostrich (Struthio camelus) blastoderm and embryo development following storage of eggs at various temperatures. Br Poult Sci 46(6):652–660

    Article  CAS  PubMed  Google Scholar 

  • McGeady TA, Quinn PJ, FitzPatrick ES, Ryan MT, Cahalan S (2006) Veterinary embryology. Blackwell, London

    Google Scholar 

  • Moller AP (1994) Directional selection on directional asymmetry: testes size and secondary sexual characters in birds. Proc R Soc Lond B 258:147–151

    Article  Google Scholar 

  • Morrish BC, Sinclair AH (2002) Vertebrate sex determination: many means to an end. Reproduction 124(4):447–457

    Article  CAS  PubMed  Google Scholar 

  • Mortola JP (2009) Gas exchange in avian embryos and hatchlings. Comp Biochem Phys A 153(4):359–377

    Article  Google Scholar 

  • Nagai H, Mak S–S, Weng W, Nakaya Y, Ladher R, Sheng G (2011) Embryonic development of the emu, Dromaius novaehollandiae. Dev Dyn 240(1):162–175

    Article  PubMed  Google Scholar 

  • Narbaitz R, Adler R (1966) Submicroscopical observations on the differentiation of chick gonads. J Embryol Exp Morph 16(1):41–47

    CAS  PubMed  Google Scholar 

  • Nicholls TJ, Graham GP (1972) Observations on the ultrastructure and differentiation of Leydig cells in the testis of the Japanese quail (Coturnix coturnix japonica). Biol Reprod 6(2):179–192

    CAS  PubMed  Google Scholar 

  • Ozegbe PC, Aire TA, Soley JT (2006) The morphology of the efferent ducts of the testis of the ostrich, a primitive bird. Anat Embryol 211(5):559–565

    Article  CAS  PubMed  Google Scholar 

  • Ozegbe PC, Aire TA, Madekurozwa MC, Soley JT (2008) Morphological and immunohistochemical study of testicular capsule and peritubular tissue of emu (Dromaius novaehollandiae) and ostrich (Struthio camelus). Cell Tissue Res 332(1):151–158

    Article  CAS  PubMed  Google Scholar 

  • Ozegbe PC, Kimaro W, Madekurozwa MC, Soley JT, Aire TA (2010) The excurrent ducts of the testis of the emu (Dromaius novaehollandiae) and ostrich (Struthio camelus): microstereology of the epididymis and immunohistochemistry of its cytoskeletal systems. Anat Histol Embryol 39(1):7–16

    Article  CAS  PubMed  Google Scholar 

  • Prakash S, Prithiviraj E, Suresh S (2008) Developmental changes of seminiferous tubule in prenatal, postnatal and adult testis of bonnet monkey (Macaca radiata). Anat Histol Embryol 37(1):19–23

    CAS  PubMed  Google Scholar 

  • Romanoff AL (1960) The avian embryo. Structural and functional development. Macmillan, New York

    Google Scholar 

  • Sadler TW (2010) Langman’s medical embryology. Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  • Sekido R, Lovell-Badge R (2007) Mechanisms of gonadal morphogenesis are not conserved between chick and mouse. Dev Biol 302:132–142

    Article  CAS  PubMed  Google Scholar 

  • Shahin MA, Torok O (1982) Differentiation of male chick embryo gonads during the last week of incubation in organ and tissue culture. Z Mikrosk Anat Forsch 96(1):157–170

    CAS  PubMed  Google Scholar 

  • Skinner MK, Griswold MD (2005) Sertoli cell biology. Academic Press, London

    Google Scholar 

  • Smith CA (2007) Avian, sex determination and gonadal sex differentiation. In: Jamieson BGM (ed) Reproductive biology and phylogeny of birds. Science Publishers, Enfield, pp 479–506

    Google Scholar 

  • Soley JT (1992) A histological study of spermatogenesis in the ostrich (Struthio camelus). PhD thesis. University of Pretoria, Pretoria

  • Soley JT, Groenewald HB (1999) Reproduction. In: Deeming DC (ed) The ostrich: biology production and health. CABI Publishing, New York, pp 129–159

    Google Scholar 

  • Tagami T, Kagami H, Matsubara Y, Harumi T, Naito M, Takeda K, Hanada H, Nirasawa K (2007) Differentiation of female primordial germ cells in the male testes of chicken (Gallus gallus domesticus). Mol Reprod Dev 74(1):68–75

    Article  CAS  PubMed  Google Scholar 

  • Van Krey H (1990) Reproductive biology in relation to breeding and genetics. In: Crawford RD (ed) Poultry breeding and genetics. Elsevier, Amsterdam, pp 61–90

    Google Scholar 

  • Wei L, Peng KM, Liu H, Song H, Wang Y, Tang L (2011) Histological examination of testicular cell development and apoptosis in the ostrich chick. Turk J Vet Anim Sci 35(1):7–14

    Google Scholar 

  • Zaccanti F, Vallisneri M, Quaglia A (1990) Early aspects of sex differentiation in the gonads of chick embryos. Differentiation 43(2):71–80

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Ren Z, Tang L (2011) Anatomic study on the main male reproductive organs of ostrich. Global J Health Sci 3(1):181–184

    Article  Google Scholar 

Download references

Acknowledgments

This research has been supported by a grant (No. 881) from the Research Council of the Ferdowsi University of Mashhad. We especially thank Mrs. Naseri (Central lab of FUM), Dr. J. Sadeghinezhad and Dr. J. Ashrafi Helan for their invaluable help.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abolghasem Nabipour.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hassanzadeh, B., Nabipour, A., Behnam Rassouli, M. et al. Morphological development of testes in ostrich (Struthio camelus) embryo. Anat Sci Int 89, 129–139 (2014). https://doi.org/10.1007/s12565-013-0207-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12565-013-0207-9

Keywords

Navigation