Skip to main content
Log in

Contour Detection in Colour Images Using a Neurophysiologically Inspired Model

  • Published:
Cognitive Computation Aims and scope Submit manuscript

Abstract

Background

The predictive coding/biased competition (PC/BC) model of V1 has previously been applied to locate boundaries defined by local discontinuities in intensity within an image.

Objective

Here PC/BC is extended to perform contour detection for colour images. Methods The proposed extensions are inspired by neurophysiological data from single neurons in macaque primary visual cortex (V1).

Results

The behaviour of this extended model is consistent with the neurophysiological experimental results. Furthermore, when compared to methods used for contour detection in computer vision, the colour PC/BC model of V1 slightly outperforms some recently proposed algorithms which use more cues and/or require a complicated training procedure.

Conclusions

The colour PC/BC model of V1 can successfully simulate the responses properties of orientation-selective double-opponent neuron in macaque V1 and has practical applications for contour detection in natural images.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Walther DB, Chai B, Caddigan E, Beck DM, Fei-Fei L. Simple line drawings suffice for functional MRI decoding of natural scene categories. Proc Natl Acad Sci. 2011;108(23):9661–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Arbelaez P, Maire M, Fowlkes C, Malik J. Contour detection and hierarchical image segmentation. IEEE Trans Pattern Anal Mach Intell. 2011;33:898–916.

    Article  PubMed  Google Scholar 

  3. Lowe DG. Object recognition from local scale-invariant features. In: The proceedings of the seventh IEEE international conference on computer vision, 1999, vol 2, pp 1150–1157.

  4. Comport A, Marchand É, Chaumette F. Robust model-based tracking for robot vision. In: The proceedings of IEEE/RSJ international conference on intelleligence robots and systems, 2004, vol 1, pp 692–697.

  5. Chalana V, Linker DT, Haynor DR, Kim Y. A multiple active contour model for cardiac boundary detection on echocardiographic sequences. IEEE Trans Med Imaging. 1996;15:290–8.

    Article  CAS  PubMed  Google Scholar 

  6. Canny J. A computational approach to edge detection. IEEE Trans Pattern Anal Mach Intell. 1986;8:679–98.

    Article  CAS  PubMed  Google Scholar 

  7. Perez F, Koch C. Toward color image segmentation in analog VLSI: algorithm and hardware. Int J Comput Vis. 1994;12:17–42.

    Article  Google Scholar 

  8. Martin DR, Fowlkes CC, Malik J. Learning to detect natural image boundaries using local brightness, color and texture cues. IEEE Trans Pattern Anal Mach Intell. 2004;26(5):530–49.

    Article  PubMed  Google Scholar 

  9. Mairal J, Leordeanu M, Bach F, Hebert M, Ponce J. Discriminative sparse image models for class-specific edge detection and image interpretation. Computer vision-ECCV2008, vol 5304, pp 43–56. Berlin: Springer; 2008

  10. Mairal J, Elad M, Sapiro G. Sparse representation for color image restoration. IEEE Trans Image Process. 2008;17:53–69.

    Article  PubMed  Google Scholar 

  11. Spratling MW. Predictive coding as a model of response properties in cortical area V1. J Neurosci. 2010;30:3531–43.

    Article  CAS  PubMed  Google Scholar 

  12. Spratling MW. Image segmentation using a sparse coding model of cortical area V1. IEEE Trans Image Process. 2013;22(4):1631–43.

    Article  PubMed  Google Scholar 

  13. Johnson EN, Hawken MJ, Shapley R. The spatial transformation of color in the primary visual cortex of the macaque monkey. Nat Neurosci. 2001;4:409–16.

    Article  CAS  PubMed  Google Scholar 

  14. Johnson EN, Hawken MJ, Shapley R. The orientation selectivity of colour-responsive neurons in macaque V1. J Neurosci. 2008;28:8096–106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Yang KF, Gao S, Guo C, Li C, Li Y. Boundary detection using double-opponency and spatial sparseness constraint. IEEE Trans Image Process. 2015;24:2565–78.

    Article  Google Scholar 

  16. Martin D, Fowlkes C, Tal D, Malik J. A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. Proc Int Conf Comput Vis. 2001;2:416–23.

    Google Scholar 

  17. Burghouts GJ, Geusebroek JM. Performance evaluation of local colour invariants. Comput Vis Image Underst. 2009;113:48–62.

    Article  Google Scholar 

  18. Van De Sande KEA, Gevers T, Snoek CGM. Evaluating color descriptors for object and scene recognition. IEEE Trans Pattern Anal Mach Intell. 2010;32:1582–96.

    Article  PubMed  Google Scholar 

  19. Linde O, Lindeberg T. Composed complex-cue histograms: an investigation of the information content in receptive field based image descriptors for object recognition. Comput Vis Image Underst. 2012;116:538–60.

    Article  Google Scholar 

  20. Arbelaez P, Maire M, Fowlkes C, Malik J. Contour detection and hierarchical image segmentation. IEEE Trans Pattern Anal Mach Intell. 2011;33:898–916.

    Article  PubMed  Google Scholar 

  21. Shapley R, Hawken MJ. Colour in the cortex: single-and double-opponent cells. Vis Res. 2011;51:701–17.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Beaudot WH, Mullen KT. Orientation selectivity in luminance and color vision assessed using 2-d band-pass filtered spatial noise. Vis Res. 2005;45:687–96.

    Article  PubMed  Google Scholar 

  23. Gegenfurtner KR. Cortical mechanisms of color vision. Nat Rev Neurosci. 2003;4:563–72.

    Article  CAS  PubMed  Google Scholar 

  24. Leventhal AG, Thompson KG, Liu D, Zhou Y, Ault SJ. Concomitant sensitivity to orientation, direction, and color of cells in layers 2, 3, and 4 of monkey striate cortex. J Neurosci. 1995;15:1808–18.

    CAS  PubMed  Google Scholar 

  25. Friedman HS, Zhou H, Heydt R. The coding of uniform color figures in monkey visual cortex. J Physiol. 2003;548:593–613.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Caywood MS, Willmore B, Tolhurst DJ. Independent components of color natural scenes resemble V1 neurons in their spatial and colour tuning. J Neurophysiol. 2004;91:2859–73.

    Article  PubMed  Google Scholar 

  27. Girard P, Morrone MC. Spatial structure of chromatically opponent receptive fields in the human visual system. Vis Neurosci. 1995;12:103–16.

    Article  CAS  PubMed  Google Scholar 

  28. Ringach DL. Spatial structure and symmetry of simple-cell receptive fields in macaque primary visual cortex. J Neurophysiol. 2002;88:455–63.

    PubMed  Google Scholar 

  29. Lennie P, Movshon JA. Coding of color and form in the geniculostriate visual pathway (invited review). JOSA A. 2005;22(10):2013–33.

    Article  PubMed  Google Scholar 

  30. Lennie P, Krauskopf J, Sclar G. Chromatic mechanisms in striate cortex of macaque. J Neurosci. 1990;10:649–69.

    CAS  PubMed  Google Scholar 

  31. Johnson EN, Hawken MJ, Shapley R. Cone inputs in macaque primary visual cortex. J Neurophysiol. 2004;91:2501–14.

    Article  PubMed  Google Scholar 

  32. Mullen KT, Dumoulin SO, McMahon KL, De Zubicaray GI, Hess RF. Selectivity of human retinotopic visual cortex to S-cone-opponent, L/M-cone-opponent and achromatic stimulation. Eur J Neurosci. 2007;25:491–502.

    Article  PubMed  Google Scholar 

  33. Johnson EN, Van Hooser SD, Fitzpatrick D. The representation of S-cone signals in primary visual cortex. J Neurosci. 2010;30:10337–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lindeberg T. A computational theory of visual receptive fields. Biol Cybern. 2013;107:589–635.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Young AR, Lesperance RM. The gaussian derivative model for spatial-temporal vision: II cortical data. Spat Vis. 2001;14:321–89.

    Article  CAS  PubMed  Google Scholar 

  36. Lindeberg T. Time-causal and time-recursive spatio-temporal receptive fields. J Math Imaging Vis. 2016;55:50–88.

    Article  Google Scholar 

  37. Lindeberg T. Generalized axiomatic scale-space theory. Adv Imaging Electron Phys. 2013;178:1–96.

    Article  Google Scholar 

  38. Hunt J, Bosking W, Goodhill G. Statistical structure of lateral connections in the primary visual cortex. Neural Syst Circuits. 2011;1(1):3.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Ren X. Multi-scale improves boundary detection in natural image. Computer vision-ECCV. 2008; pp 533–545.

  40. Shi J, Malik J. Normalized cuts and image segmentation. IEEE Trans Pattern Anal Mach Intell. 2000;22:888–905.

    Article  Google Scholar 

  41. Maire M, Arbelaez P, Fowlkes C, Malik J. Using contours to detect and localize junctions in natural image. Comput Vis Pattern Recog. 2008; pp 1–8

  42. Najman L, Schmitt M. Geodesic saliency of watershed contours and hierarchical segmentation. IEEE Trans Pattern Anal Mach Intell. 1996;18:1163–73.

    Article  Google Scholar 

  43. Arbelaez P. ‘Boundary extraction in natural images using ultrametric contour maps’. In: IEEE Conference on computer vision and pattern recognition Workshop, 2006, pp 182–182

  44. Dollar P, Tu Z, Belongie S. Supervised learning of edges and object boundaries. In: 2006 IEEE computer society conference on computer vision and pattern recognition, vol 2, pp 1964–1971; 2006

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qi Wang or M. W. Spratling.

Ethics declarations

Conflict of interest

Qi Wang and Michael Spratling declare that they have no conflict of interest.

Informed Consent

Informed consent was not required as no human or animals were involved.

Human and Animal Rights

This article does not contain any studies with human or animal subjects performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Q., Spratling, M.W. Contour Detection in Colour Images Using a Neurophysiologically Inspired Model. Cogn Comput 8, 1027–1035 (2016). https://doi.org/10.1007/s12559-016-9432-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12559-016-9432-6

Keywords

Navigation