Skip to main content

Advertisement

Log in

The labyrinthine morphology of Pronycticebus gaudryi (Primates, Adapiformes)

  • Original Paper
  • Published:
Palaeobiodiversity and Palaeoenvironments Aims and scope Submit manuscript

Abstract

The publication of a well preserved Eocene primate, Darwinius masillae (Cercamoniinae, Notharctidae), has revived the debate on the phylogenetic relationships of Adapiformes and extant primates (Franzen et al., PLos ONE 4(5):e5723, 2009). Recently, Lebrun et al. (J Anat 216:368–380, 2010) showed that the morphology of the bony labyrinth of strepsirrhine primates conveys a strong phylogenetic signal. The study of labyrinthine morphology may thus bring a new piece of evidence to resolve phylogenetic relationships within a group. The investigation of the labyrinthine morphology of another Cercamoniinae, Pronycticebus gaudryi, reveals no synapomorphy with the labyrinths of modern anthropoids. On the contrary, Pronycticebus is closer in labyrinthine shape to extant strepsirrhines, which supports the hypothesis that the Cercamoniinae and other Adapiformes are the sister group of toothcombed primates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Beard KC, Dagosto M, Gebo DL, Godinot M (1988) Interrelationships among primate higher taxa. Nature 331:712–714

    Article  Google Scholar 

  • Beard KC, Wang B, Dawson MR, Huang X, Tong Y (1996) Earliest complete dentition of an anthropoid primate from the late middle Eocene of Shanxi Province, China. Science 272:82–85

    Article  Google Scholar 

  • Benoit J, Orliac M, Tabuce R (2012) The petrosal of Chambius (Macroscelidea, Afrotheria) from the Eocene of Djebel Chambi (Tunisia). J Syst Palaeontology (in press)

  • Coleman MN, Boyer DM (2012) Inner ear evolution in Primates through the Cenozoic. Implications for the evolution of hearing. Anat Rec 295:615–631

    Article  Google Scholar 

  • Coleman MN, Colbert MW (2007) Technical note: CT Thresholding protocols for taking measurements on three-dimensional models. Am J Phys Anthropol 133:723–725

    Article  Google Scholar 

  • Coleman MN, Colbert MW (2010) Correlations between auditory structures and hearing sensitivity in non-human primates. J Morphol 271:511–532

    Google Scholar 

  • Coleman MN, Kay RF, Colbert MW (2010) Auditory morphology and hearing sensitivity in fossil New World monkeys. Anat Rec 293:1711–1721

    Article  Google Scholar 

  • Couette S, Lebrun R, Godinot M (2011) The haplorhine/strepsirhine position of Darwinius masillae: new insights based on the CT analysis of Pronycticebus gaudryi middle ear morphology. In: Lehmann T, Schaal SFK (eds) The world at the time of Messel: Puzzles in the palaeobiology, palaeoenvironment, and the history of the early primates. (22nd Int Senckenberg, conference volume). Senckenberg Gesellschaft für Naturforschung, Frankfurt am Main, pp 44–45

  • Dryden IL, Mardia KV (1998) Statistical shape analysis. Wiley, Chichester

    Google Scholar 

  • Echteler SM, Fay RR, Popper AN (1994) Structure of the mammalian cochlea. In: Fay RR, Popper AN (eds) Comparative hearing: Mammals. Springer, New York, pp 134–171

    Chapter  Google Scholar 

  • Ekdale EG (2009) Variation within the bony labyrinth of mammals. PhD dissertation, University of Texas, Austin

  • Felsenstein J (1989) PHYLIP—Phylogeny Inference Package (Version 3.2). Cladistics 5:164–166

    Google Scholar 

  • Franzen JL (1994) The Messel primates and anthropoid origins. In: Fleagle JG, Kay RF (eds) Anthropoid origins. Plenum Press, New York, pp 99–122

  • Franzen JL, Gingerich PD, Habersetzer J, Hurum JH, von Koenigswald W, Smith BH (2009) Complete primate skeleton from the middle Eocene of Messel in Germany: morphology and paleobiology. PLoS One 4(5):e5723

    Article  Google Scholar 

  • Gingerich PD (1973) Anatomy of the temporal bone in the Oligocene anthropoid Apidium and the origin of Anthropoidea. Folia Primatol 19(5):329–337

    Article  Google Scholar 

  • Gingerich PD (1975) A new genus of Adapidae (Mammalia, Primates) from the late Eocene of Southern France, and its significance for the origin of higher primates. Contributions from the Museum of Paleontology, University of Michigan 24:163–170

    Google Scholar 

  • Gingerich PD (1981) Eocene Adapidae, paleobiogeography, and the origin of South American Platyrrhini. In: Ciochon RL, Chiarelli AB (eds) Evolutionary biology of the new world monkeys and continental drift. Plenum Press, New York, pp 123–138

    Google Scholar 

  • Gingerich PD (1986) Early Eocene Cantius torresi—oldest primate of modern aspect from North America. Nature 320:319–321

    Article  Google Scholar 

  • Gingerich PD, Schoeninger M (1977) The fossil record and primate phylogeny. J Hum Evol 6:483–505

    Article  Google Scholar 

  • Gingerich PD, Franzen JL, Habersetzer J, Hurum JH, Smith BH (2010) Darwinius masillae is a Haplorhine—Reply to Williams et al. (2010). J Hum Evol 59(5):574–579

    Article  Google Scholar 

  • Gleich O, Dooling RJ, Manley GA (2005) Audiogram, body mass, and basilar papilla length: correlations in birds and predictions for extinct archosaurs. Naturwissenschaften 92:595–598

    Article  Google Scholar 

  • Godinot M (1978) Un nouvel Adapidé (Primate) de l’Eocène inférieur de Provence. CR Acad Sci Paris, ser D 286:1869–1872

    Google Scholar 

  • Godinot M (1998) A summary of adapiform systematics and phylogeny. Folia Primatol 69(suppl 1):218–249

    Article  Google Scholar 

  • Grandidier G (1904) Un nouveau lémurien fossile de France, le Pronycticebus gaudryi. Bull Mus Natl Hist Nat Paris 10:9–13

    Google Scholar 

  • Gregory WK (1915) I: On the relationship of the Eocene Lemur Notharctus to the Adapidae and the other primates. II: on the classification and phylogeny of the Lemuroidea. Bull Geol Soc Am 26:419–446

    Google Scholar 

  • Gregory WK (1920) On the structure and relations of Notharctus, an American Eocene primate. Bull Am Mus Nat Hist 42:95–263

    Google Scholar 

  • Gunz P, Ramsier M, Kuhrig M, Hublin J-J, Spoor F (2012) The mammalian bony labyrinth reconsidered, introducing a comprehensive geometric morphometric approach. J Anat 6:529–543

    Article  Google Scholar 

  • Herbomel E, Godinot M (2011) A new species of Agerinia (Primates, Adapiformes) and its bearing on the phylogenetic affinities of Darwinius masillae. In: Lehmann T, Schaal SFK (eds) The world at the time of Messel: Puzzles in the palaeobiology, palaeoenvironment, and the history of the early primates. (22nd Int Senckenberg, conference volume). Senckenberg Gesellschaft für Naturforschung, Frankfurt am Main, pp 80–81

  • Hurum JH (2011) Cranial morphology of the Eocene primate Darwinius masillae. In: Lehmann T, Schaal SFK (eds) The world at the time of Messel: Puzzles in the palaeobiology, palaeoenvironment, and the history of the early primates. (22nd Int Senckenberg, conference volume). Senckenberg Gesellschaft für Naturforschung, Frankfurt am Main, p 84

  • Hyrtl J (1845) Vergleichend-anatomische Untersuchungen über das innere Gehörorgan des Menschen und der Säugethiere. Friedrich Ehrlich, Prague

    Google Scholar 

  • Jaeger J-J, Thein T, Benammi M, Chaimanee Y, Soe AN, Thit L, Than T, San W, Ducrocq S (1999) A new primate from the middle Eocene of Myanmar and Asian early origin of anthropoids. Science 286:528–530

    Article  Google Scholar 

  • Jeffery N, Spoor F (2004) Prenatal growth and development of the modern human labyrinth. J Anat 204:71–92

    Article  Google Scholar 

  • Jerison HJ (1973) Evolution of the brain and intelligence. Academic Press, New York

    Google Scholar 

  • Jerison HJ (1979) Brain, body and Encephalization in early primates. J Hum Evol 8:615–635

    Article  Google Scholar 

  • Kay RF, Ross C, Williams BA (1997) Anthropoid origin. Science 275:797–803

    Article  Google Scholar 

  • Kirk EC, Gosselin-Ildari AD (2009) Cochlear labyrinth volume and hearing abilities in primates. Anat Rec 292:765–776

    Article  Google Scholar 

  • Le Gros Clark WF (1934) On the skull structure of Pronycticebus gaudryi. Proc Zool Soc Lond 1:19–27

    Google Scholar 

  • Lebrun R (2008) Evolution and development of the Strepsirrhine Primate Skull. PhD thesis, Université Montpellier II, University Zürich Irchel

  • Lebrun R, Ponce de León MS, Tafforeau P, Zollikofer CPE (2010) Deep evolutionary roots of strepsirrhine primate labyrinthine morphology. J Anat 216:368–380

    Article  Google Scholar 

  • Lebrun R, Couette S, Godinot M (2011) The labyrinthine morphology of Pronycticebus gaudryi (Primates, Adapiformes). In: Lehmann T, Schaal SFK (eds) The world at the time of Messel: puzzles in the palaeobiology, palaeoenvironment, and the history of the early primates. (22nd Int Senckenberg, conference volume). Senckenberg Gesellschaft für Naturforschung, Frankfurt am Main, pp 98–99

  • Lockwood C, Kimbel WH, Lynch JM (2004) Morphometrics and hominoid phylogeny: support for a chimpanzee—human clade and differentiation among great ape subspecies. Proc Natl Acad Sci USA 101:4356–4360

    Article  Google Scholar 

  • MacPhee RDE, Cartmill M (1986) Basicranial structures and primate systematics. In: Swindler DR (ed) Comparative primate biology, vol I, Systematics, evolution, and anatomy. Liss, New York, pp 219–275

    Google Scholar 

  • Marivaux L, Antoine P-O, Baqui SRH, Benammi M, Chaimanee Y, Crochet J-Y, de Franceschi D, Iqbal N, Jaeger J-J, Metais G, Roohi G, Welcomme J-L (2005) Anthropoid primates from the Oligocene of Pakistan (Bugti Hills): data on early anthropoid evolution and biogeography. Proc Natl Acad Sci USA 102:8436–8441

    Article  Google Scholar 

  • Ni X, Wang Y, Hu Y, Li C (2004) A euprimate skull from the early Eocene of China. Nature 427:65–68

    Article  Google Scholar 

  • Radinski LB (1977) Early primate brains: facts and fiction. J Hum Evol 6:79–86

    Article  Google Scholar 

  • Rasmussen DT (1986) Anthropoid origins: a possible solution to the Adapidae-Omomyidae paradox. J Hum Evol 15:1–12

    Article  Google Scholar 

  • Rasmussen DT (1990) The phylogenetic position of Mahgarita stevensi: Protoanthropoid or lemuroid? Int J Primatol 11:439–469

    Article  Google Scholar 

  • Rohlf FJ (1990) Rotational fit (Procrustes) Method. In: Rohlf FJ, Bookstein FL (eds) Proceedings of the Michigan morphometrics Workshop. The University of Michigan Museum of Zoology, pp 227–236

  • Ross CF, Williams BA, Kay RF (1998) Phylogenetic analysis of anthropoid relationships. J Hum Evol 35:221–306

    Article  Google Scholar 

  • Saban R (1963) Contribution a l’étude de l’os temporal des primates. Description chez l’homme et les prosimiens. Anatomie comparée et phylogénie. Mém Mus Natl Hist Nat Paris, sér A 29:1–378

  • Schmelzle T, Sánchez-Villagra MR, Maier W (2007) Vestibular labyrinth diversity in diprotodontian marsupial mammals. Mamm Stud 32:83–97

    Article  Google Scholar 

  • Seiffert ER, Simons CVM, Clyde WC, Rossie JB, Attia Y, Bown TM, Chatrath PS, Mathison ME (2005) Basal anthropoids from Egypt and the antiquity of Africa’s higher primate radiation. Science 310:300–304

    Article  Google Scholar 

  • Silcox MT, Bloch JI, Boyer DM, Godinot M, Ryan TM, Spoor F, Walker A (2009) The semicircular canal system in early primates and euprimates. J Hum Evol 56:315–327

    Article  Google Scholar 

  • Simons EL (1962) A new Eocene primate genus, Cantius, and a revision of some allied European lemuroids. Bulletin of the British Museum (Natural History). Geology 7:1–36

    Google Scholar 

  • Specht M (2007) Spherical surface parameterization and its application to geometric morphometric analysis of the braincase. PhD dissertation, University of Zürich Irchel, Zürich

  • Specht M, Lebrun R, Zollikofer CPE (2007) Visualizing shape transformation between Chimpanzee and human braincases. Visual Comput 23(9–11):743–751

    Article  Google Scholar 

  • Spoor F (1997) Basicranial architecture and relative brain size of Sts 5. (Australopithecus africanus) and other Plio-Pleistocene hominids. S Afr J Sci 93:182–187

    Google Scholar 

  • Spoor C, Zonneveld F (1998) Comparative review of the human bony labyrinth. Am J Phys Anthropol 27:211–251

    Article  Google Scholar 

  • Spoor F, Zonneveld F, Macho G (1993) Linear measurements of cortical bone and dental enamel by computed tomography: applications and problems. Am J Phys Anthropol 91(4):469–484

    Article  Google Scholar 

  • Spoor F, Garland TJR, Krovitz G, Ryan TM, Silcox MT, Walker A (2007) The primate semicircular canal system and locomotion. Proc Natl Acad Sci USA 104(26):10808–10812

    Article  Google Scholar 

  • Szalay FS (1971) The European adapid primates Agerina and Pronycticebus. Am Mus Novit 2466:1–18

    Google Scholar 

  • Szalay FS (1976) Systematics of the Omomyidae (Tarsiiformes, Primates). Taxonomy, phylogeny, and adaptations. Bull Am Mus Nat Hist 156:157–450

    Google Scholar 

  • Tafforeau P, Boistel R, Boller E, Bravin A, Brunet M, Chaimanee Y, Cloetens P, Feist M, Hoszowska J, Jaeger J-J, Kay RF, Lazzari V, Marivaux L, Nel A, Nemoz C, Thibault X, Vignaud P, Zabler S (2006) Applications of X-ray synchrotron microtomography for non-destructive 3D studies of paleontological specimens. Appl Phys Mater 83(2):195–202

    Article  Google Scholar 

  • Walker A, Ryan TM, Silcox MT, Simons EL, Spoor F (2008) The semicircular canal system and locomotion: the case of extinct lemuroids and lorisoids. Evol Anthropol 17:135–145

    Article  Google Scholar 

  • West CD (1985) The relationship of the spiral turns of the cochlea and the length of the basilar membrane to the range of audible frequencies in ground dwelling mammals. J Acoust Soc Am 77(3):1091–1100

    Article  Google Scholar 

  • Williams BA, Kay RF, Kirk EC, Ross CF (2010) Darwinius masillae is a strepsirrhine—a reply to Franzen et al. (2009). J Hum Evol 59(5):574–579

    Article  Google Scholar 

Download references

Acknowledgments

We thank Pascal Tassy and Christine Argot for giving access to the cranium of Pronycticebus gaudryi. We are grateful to Hugo Dutel and Olivier Lambert, who helped to perform the scan of Pronycticebus, and to the “ATM forms possibles”, for financing that scan. We express our gratitude to Marcia Ponce de León (Anthropological Institute and Museum Zürich) for giving access to extant specimens and to scanning facilities. We thank the staff of beamlines ID19 and ID17 (European Synchrotron Radiation Facility), and the Montpellier RIO Imaging (MRI) platform. We are grateful to Lionel Hautier, Matt Low and Alan Heaver from the University of Cambridge for giving access to the Cambridge specimen of Adapis parisiensis and for performing the CT-Scan. We also are grateful to the following curators: Edmée Ladier (Musée d’Histoire Naturelle de Montauban), Nathalie Mémoire (Musée d’Histoire Naturelle de Bordeaux), Kurt Heissig (Museum und Institut für Paläontologie, München), Burkart Engesser and Arne Ziems (Naturhistorisches Museum Basel), Jacques Cuisin (Collection des Mammifères et des Oiseaux, Muséum d’Histoire Naturelle de Paris), Monique Vianey-Liaud, Bernard Marandat and Suzanne Jiquel (Institut des Sciences de l’Evolution de Montpellier). This research was supported by the French ANR-ERC PALASIAFRICA Program (ANR-08-JCJC-0017). We also thank Mark N. Coleman and Timothy M. Ryan for their helpful comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renaud Lebrun.

Additional information

This article is a contribution to the special issue “Messel and the terrestrial Eocene—Proceedings of the 22nd Senckenberg Conference”

Electronic supplementary material

Below is the link to the electronic supplementary material.

Figure S1

Landmarks used for geometric morphometric analysis of the bony labyrinth (specimen: Lepilemur ruficaudatus AIM-11054). Grey arrows anteromedial-to-posterolateral and anterolateral-to-posteromedial directions. (PNG 703 kb)

Figure S2

Position within the skull of the left labyrinth of a Adapis parisiensis b Otolemur crassicaudatus, c Tarsius syrichta and d Callithrix jacchus. Left: superior view of the skull and left labyrinth, the superior part of the calvaria being virtually removed. Right stereoscopic lateral view of the left labyrinth within the braincase. In Adapis parisiensis, the labyrinth is positioned in a more lateral position relatively to the brain structures. Arrows in Otolemur, Tarsius and Callithrix, the posterior canal assumes a lower position relatively to the lateral canal. Scale bars 1 cm. Specimens: a Cambridge M 538, b AIM-1841, c AIM-1732; d AIM-10168. (PNG 2862 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lebrun, R., Godinot, M., Couette, S. et al. The labyrinthine morphology of Pronycticebus gaudryi (Primates, Adapiformes). Palaeobio Palaeoenv 92, 527–537 (2012). https://doi.org/10.1007/s12549-012-0099-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12549-012-0099-z

Keywords

Navigation