Skip to main content
Log in

A test of a new method and software for the rapid estimation of cross-sectional geometric properties of long bone diaphyses from 3D laser surface scans

  • Original Paper
  • Published:
Archaeological and Anthropological Sciences Aims and scope Submit manuscript

Abstract

This paper introduces a new methodological approach to the quantification of cross-sectional geometric properties based on 3D laser scan data. A variety of methods have been used to calculate estimates of rigidity in the diaphyses of long bones. CT scan, biplanar radiograph, and periosteal mould techniques have all been applied to collect image data of bone sections to assess biomechanical properties (cross-sectional area and second moments of area). Whilst direct quantification of both endosteal and periosteal contours allows the greatest accuracy, such data correlate highly with a periosteal-only approach that is of greater practical application in many contexts. The advent of non-invasive 3D laser scan technologies presents a method to capture bone surface morphology that can be applied to the study of variation in the cross-sectional properties of human bones. This study tests the correspondence between cross-sectional geometric properties derived from laser scans to those obtained through traditional approaches (periosteal moulding and biplanar radiography). A custom-built program, AsciiSection, is introduced for the automated analysis of biomechanical properties direct from 3D coordinate data. The results indicate that the AsciiSection method is of comparable if not greater accuracy than traditional moulding techniques. The study suggests that there is a strong correlation between mid-diaphyseal cortical bone distribution and cross-sectional geometry calculated using laser scans. The approach provides a viable alternative to traditional techniques for the estimation of biomechanical properties and also allows the collection of rich data and descriptions of morphological variation along the diaphysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. For TA, expected relative \( {\text{PE = }}\left. {{{{\left( {\left( {1 - \left( {{{{\% {\text{MA}}}} \left/ {{100}} \right.}} \right)} \right)} \right)}} \left/ {{\left. {\left( {{1} - \left( {{{{\% {\text{MA}}}} \left/ {{100}} \right.}} \right)} \right)} \right) * 100}} \right.}} \right) \). And for J, following the formula for circular sections (Sparacello and Pearson 2010), expected relative \( {\text{PE}} = \left. {\left( {{{{\left( {{1} - \left( {{1} - \left( {{{\left( {{{{\% {\text{MA}}}} \left/ {{{1}00}} \right.}} \right)}^{{2}}}} \right)} \right)} \right)}} \left/ {{\left( {{1} - \left( {{{\left( {{{{\% {\text{MA}}}} \left/ {{{1}00}} \right.}} \right)}^{{2}}}} \right)} \right)}} \right.}} \right) * {1}00} \right) \).

Abbreviations

CSG:

Cross-sectional geometry

TA :

Total area of section

CA :

Cortical area

I x :

Second moment of area, x-axis

I y :

Second moment of area, y-axis

I max :

Principle moment of area, max

I min :

Principle moment of area, min

J :

Polar second moment of area

I max/I min :

Cross-sectional shape max–min axes

I x /I y :

Cross-sectional shape, x- to y-axes

med :

Added to above abbreviations when referring to property calculated on a section including the medullary cavity

%CA :

Per cent cortical area

PM:

Periosteal moulding method

BR:

Biplanar radiograph method (biplanar radiography + periosteal moulding)

LS:

Laser scan method

CT:

Computed tomography scanning method

2D:

Two dimensional

3D:

Three dimensional

PE:

Per cent error

BIAS%:

Mean relative PE

PPE:

Per cent prediction error

%SEE:

Per cent standard error of the estimate

References

  • Benazzi S, Orlandi M, Gruppioni G (2009) Technical note: virtual reconstruction of a fragmentary clavicle. Am J Phys Anthropol 138:507–514

    Article  Google Scholar 

  • Bertram JEA, Swartz SM (1991) The ‘law of bone transformation’: a case of crying wolff? Biol Rev 66(3):243–273. doi:10.1111/j.1469-185X.1991.tb01142.x

    Article  Google Scholar 

  • Carlson KJ, Grine FE, Pearson OM (2007) Robusticity and sexual dimorphism in the postcranium of modern hunter–gatherers from Australia. Am J Phys Anthropol 134(1):9–23. doi:10.1002/Ajpa.20617

    Article  Google Scholar 

  • Fresia AE, Ruff CB, Larsen CS (1990) Temporal decline in bilateral asymmetry of the upper limb on the Georgia Coast. In: Larsen CS (ed) The archaeology of Mission Santa Catalina de Guale. 2. Biocultural interpretations of a population in transition. Papers Am Mus Nat Hist 68:121–132

  • Friess M (2012) Scratching the surface? The use of surface scanning in physical and palaeoanthropology. J Anthropol Sci 90:1–26

    Google Scholar 

  • Friess M, Marcus LF, Reddy DP, Delson E (2002) The use of 3D laser scanning techniques for the morphometric analysis of human facial shape variation. In: Mafart B, Delingette H (eds) Colloquium: “Three-Dimensional Imaging in Paleoanthropology and Prehistoric Archaeology”. Archaeopress: British Archaeological Series, Oxford

  • Galik K, Senut B, Pickford M, Gommery D, Treil J, Kuperavage AJ, Eckhardt RB (2004) External and internal morphology of the BAR 1002’00 Orrorin tugenensis Femur. Science 305:1450. doi:10.1126/science.1098807

    Article  Google Scholar 

  • Garvin HM (2012) Sexual dimorphism in skeletal browridge and chin morphologies determined using a new quantitative method. Am J Phys Anthropol 147:661–670

    Article  Google Scholar 

  • Holt BM (2003) Mobility in upper paleolithic and mesolithic Europe: evidence from the lower limb. Am J Phys Anthropol 122(3):200–215. doi:10.1002/ajpa.10256

    Article  Google Scholar 

  • Kuzminsky SC, Gardiner MS (2012) Three-dimensional laser scanning: potential uses for museum conservation and scientific research. J Arch Sci 39(8):2744–2751

    Article  Google Scholar 

  • Lambers K, Eisenbeiss H, Sauerbier M, Kupferschmidt D, Gaisecker T, Sotoodeh S, Hanusch T (2007) Combining photogrammetry and laser scanning for the recording and modelling of the late intermediate period site of Pinchango Alto, Palpa, Peru. J Arch Sci 34(10):1702–1712

    Article  Google Scholar 

  • Lerma JL, Navarro S, Cabrelles M, Villaverde V (2010) Terrestrial laser scanning and close range photogrammetry for 3D archaeological documentation: the upper Palaeolithic Cave of Parpallo as a case study. J Arch Sci 37(3):499–507

    Article  Google Scholar 

  • Lieberman DE, Polk JD, Demes B (2004) Predicting long bone loading from cross-sectional geometry. Am J Phys Anthropol 123:156–171

    Article  Google Scholar 

  • Maggiano IS, Schultz M, Kierdorf H, Sosa TS, Maggiano CM, Tiesler Blos V (2008) Cross-sectional analysis of long bones, occupational activities and long-distance trade of the classic Maya from Xcambo—archaeological and osteological evidence. Am J Phys Anthropol 136(4):470–477. doi:10.1002/ajpa.20830

    Article  Google Scholar 

  • Marchi D (2008) Relationships between lower limb cross-sectional geometry and mobility: the case of a Neolithic sample from Italy. Am J Phys Anthropol 137(2):188–200. doi:10.1002/ajpa.20855

    Article  Google Scholar 

  • Marchi D, Sparacello VS, Holt BM, Formicola V (2006) Biomechanical approach to the reconstruction of activity patterns in Neolithic Western Liguria, Italy. Am J Phys Anthropol 131(4):447–455. doi:10.1002/ajpa.20449

    Article  Google Scholar 

  • O’Neill MC, Ruff CB (2004) Estimating human long bone cross-sectional geometric properties: a comparison of noninvasive methods. J Hum Evol 47:221–235

    Article  Google Scholar 

  • Ohman JC, Lovejoy CO, White TD (2005) Questions about Orrorin femur. Science 307:845

    Article  Google Scholar 

  • Pearson OM (2000) Activity, climate, and postcranial robusticity—implications for modern human origins and scenarios of adaptive change. Curr Anthropol 41(4):569–607

    Article  Google Scholar 

  • Ruff CB (1987) Sexual dimorphism in human lower limb bone structure: relationship to subsistence strategy and sexual division of labor. J Hum Evol 16:391–416

    Article  Google Scholar 

  • Ruff CB (2000) Biomechanical analyses of archaeological human skeletons. In: Katzenberg MA, Saunders SR (eds) Biological anthropology of the human skeleton. Wiley, New York, pp 71–102

    Google Scholar 

  • Ruff CB (2002) Long bone articular and diaphyseal structure in old world monkeys and apes. I: locomotor effects. Am J Phys Anthropol 119 (4):305-342. doi:10.1002/ajpa.10117

    Google Scholar 

  • Ruff CB (2003) Long bone articular and diaphyseal structure in Old World monkeys and apes. II: estimation of body mass. Am J Phys Anthropol 120(1):16–37. doi:10.1002/ajpa.10118

    Article  Google Scholar 

  • Ruff CB (2005) Mechanical determinants of bone form: insights from skeletal remains. J Musculoskelet Neuronal Interact 5(3):202–212

    Google Scholar 

  • Ruff CB (2008) Biomechanical analyses of archaeological human skeletal samples. In: Katzenberg M, Saunders A (eds) Biological anthropology of the human skeleton. Wiley, New York, pp 183–206

    Chapter  Google Scholar 

  • Ruff CB, Hayes WC (1983a) Cross-sectional geometry of Pecos Pueblo femora and tibiae—a biomechanical investigation: I. Method and general patterns of variation. Am J Phys Anthropol 60(3):359–381. doi:10.1002/ajpa.1330600308

    Article  Google Scholar 

  • Ruff CB, Hayes WC (1983b) Cross-sectional geometry of Pecos Pueblo femora and tibiae—a biomechanical investigation: II. Sex, age, side differences. Am J Phys Anthropol 60(3):383–400. doi:10.1002/ajpa.1330600309

    Article  Google Scholar 

  • Ruff CB, Larsen CS, Hayes WC (1984) Structural changes in the femur with the transition to agriculture on the Georgia coast. Am J Phys Anthropol 64(2):125–136. doi:10.1002/ajpa.1330640205

    Article  Google Scholar 

  • Ruff CB, Trinkaus E, Walker A, Larsen CS (1993) Postcranial robusticity in Homo. I: temporal trends and mechanical interpretation. Am J Phys Anthropol 91(1):21–53. doi:10.1002/ajpa.1330910103

    Article  Google Scholar 

  • Ruff CB, Walker A, Trinkaus E (1994) Postcranial robusticity in Homo. III: ontogeny. Am J Phys Anthropol 93(1):35–54. doi:10.1002/ajpa.1330930103

    Article  Google Scholar 

  • Ruff CB, Holt BM, Sladek V, Berner M, Murphy WA Jr, zur Nedden D, Seidler H, Recheis W (2006a) Body size, body proportions, and mobility in the Tyrolean “Iceman”. J Hum Evol 51(1):91–101. doi:10.1016/j.jhevol.2006.02.001

    Article  Google Scholar 

  • Ruff CB, Holt B, Trinkaus E (2006b) Who’s afraid of the big bad Wolff?: “Wolff’s law” and bone functional adaptation. Am J Phys Anthropol 129(4):484–498. doi:10.1002/ajpa.20371

    Article  Google Scholar 

  • Shaw CN, Stock JT (2009a) Habitual throwing and swimming correspond with upper limb diaphyseal strength and shape in modern human athletes. Am J Phys Anthropol 140:161–172

    Google Scholar 

  • Shaw CN, Stock JT (2009b) Intensity, repetitiveness, and directionality of habitual adolescent mobility patterns influence the tibial diaphysis morphology of athletes. Am J Phys Anthropol 140:149–159

    Article  Google Scholar 

  • Sholts SB, Flores L, Walker PL, Warmlander SKTS (2010a) Comparison of coordinate measurement precision of different landmark types on human crania using a 3D laser scanner and a 3D digitiser: implications for applications of digital morphometrics. Int J Osteoarchaeol 21:535–543

    Article  Google Scholar 

  • Sholts SB, Warmlander SKTS, Flores L, Miller KWP, Walker PL (2010b) Variation in the measurement of cranial volume and surface area using 3D laser scanning technology. J Forensic Sci 55(4):871–876

    Article  Google Scholar 

  • Sholts SB, Stanford DJ, Flores L, Warmlander SKTS (2012) Flake scar patterns of Covis points analyzed with a new digital morphometrics approach: evidence for direct transmission of technological knowledge across early North America. J Arch Sci 39(9):3018–3026

    Article  Google Scholar 

  • Smith RJ (1984) Allometric scaling in comparative biology: problems of concept and method. Am J Physiol Regul Integr Comp Physiol 246:R152–R160

    Google Scholar 

  • Sparacello V, Marchi D (2008) Mobility and subsistence economy: a diachronic comparison between two groups settled in the same geographical area (Liguria, Italy). Am J Phys Anthropol 136(4):485–495. doi:10.1002/ajpa.20832

    Article  Google Scholar 

  • Sparacello V, Pearson OM (2010) The importance of accounting for the area of the medullary cavity in cross-sectional geometry: a test based on the femoral midshaft. Am J Phys Anthropol 143:612–624

    Article  Google Scholar 

  • Sparacello V, Pearson OM, Coppa A, Marchi D (2010) Changes in skeletal robusticity in an iron age Agropastoral Group: the samnites from the Alfedena Necropolis (Abruzzo, Central Italy). Am J Phys Anthropol 144:119–130

    Article  Google Scholar 

  • Stock JT (2002) A test of two methods of radiographically deriving long bone cross-sectional properties compared to direct sectioning of the diaphysis. Int J Osteoarchaeol 12(5):335–342

    Article  Google Scholar 

  • Stock JT (2004) Differential constraints on the pattern of skeletal robusticity in human limbs relative to climatic and behavioural influences on morphology. Am J Phys Anthropol Suppl 38:188–189

    Google Scholar 

  • Stock JT (2006) Hunter-gatherer postcranial robusticity relative to patterns of mobility, climatic adaptation, and selection for tissue economy. Am J Phys Anthropol 131(2):194–204. doi:10.1002/ajpa.20398

    Article  Google Scholar 

  • Stock JT, Pfeiffer S (2001) Linking structural variability in long bone diaphyses to habitual behaviours: foragers from the southern African Later Stone Age and the Andaman Islands. Am J Phys Anthropol 115(4):337–348. doi:10.1002/ajpa.1090

    Article  Google Scholar 

  • Stock JT, Pfeiffer S (2004) Long bone robusticity and subsistence behaviour among Later Stone Age foragers of the forest and fynbos biomes of South Africa. J Archaeol Sci 31:999–1013

    Article  Google Scholar 

  • Stock JT, Shaw CN (2007) Which measures of diaphyseal robusticity are robust? A comparison of external methods of quantifying the strength of long bone diaphyses to cross-sectional geometric properties. Am J Phys Anthropol 134(3):412–423. doi:10.1002/ajpa.20686

    Article  Google Scholar 

  • Sumner DR, Mockbee B, Morse K (1985) Computed tomography and automated image analysis of prehistoric femora. Am J Phys Anthropol 68:225–232

    Article  Google Scholar 

  • Trinkaus E, Ruff CB (1989) Diaphyseal cross-sectional morphology and biomechanics of the Fond-de-Foret 1 femur and the Spy 2 femur and tibia. Bull Soc Roy Bel Anthrop Prehist 100:33–42

    Google Scholar 

  • Trinkaus E, Churchill SE, Ruff CB (1994) Postcranial robusticity in Homo. II: Humeral bilateral asymmetry and bone plasticity. Am J Phys Anthropol 93(1):1–34. doi:10.1002/ajpa.1330930102

    Article  Google Scholar 

  • Trinkaus E, Stringer CB, Ruff CB, Hennessy RJ, Roberts MB, Parfitt SA (1999) Diaphyseal cross-sectional geometry of the Boxgrove 1 Middle Pleistocene human tibia. J Hum Evol 37(1):1–25. doi:10.1006/jhev.1999.0295

    Article  Google Scholar 

  • White TD (2006) Early hominid femora: the inside story. C R Palevol 5:99–108

    Article  Google Scholar 

Download references

Acknowledgements

Funding for this research was provided by the Natural Environment Research Council, UK. We would also like to thank the following institutions and individuals for access to skeletal collections under their care, or for their assistance: Maggie Bellatti and Mercedes Okumura, Duckworth Collection, University of Cambridge; Margaret Clegg, Heather Bonney, and Robert Kruszynski, Natural History Museum, London; Giorgio Manzi, Museo di Antropologia “G. Sergi”, Universita di Roma, Sapienza; Monica Zavattaro, Museo di Storia Naturale, Firenze; Jerry Cybulski, Janet Young, Stacey Girling, and Megan Gardiner, Canadian Museum of Civilization, Gatineau. Thanks also to the two anonymous reviewers for comments which improved this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas G. Davies.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 83.1 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Davies, T.G., Shaw, C.N. & Stock, J.T. A test of a new method and software for the rapid estimation of cross-sectional geometric properties of long bone diaphyses from 3D laser surface scans. Archaeol Anthropol Sci 4, 277–290 (2012). https://doi.org/10.1007/s12520-012-0101-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12520-012-0101-8

Keywords

Navigation