Skip to main content
Log in

De ziekte van Parkinson: van geremde motoriek tot ontremde impulsen

  • Artikelen
  • Published:
Neuropraxis

Impulscontrolestoornissen (ICS) zijn relatief vaak voorkomende stoornissen bij de ziekte van Parkinson (ZvP) die gekarakteriseerd kunnen worden als het onvermogen om bepaalde (vaak schadelijke of nadelige) impulsen te onderdrukken. ICS bij de ZvP kunnen ernstige sociaal-maatschappelijke gevolgen hebben voor zowel patiënt als mantelzorger. Het is daarom belangrijk om patiënten die het risico lopen ICS te ontwikkelen vroegtijdig te identificeren. Het ontwikkelen van ICS bij de ZvP lijkt afhankelijk te zijn van een interactie tussen een individuele predispositie en behandeling met dopaminerge medicatie. Hoewel er een aantal demografische en klinische risicofactoren bekend zijn, is de pathofysiologie van ICS nog niet volledig ontrafeld. Er zijn sterke aanwijzingen dat disfunctie van het limbische fronto-striatale circuit hieraan ten grondslag ligt. Uit recente studies komt naar voren dat er ook pathofysiologische overeenkomsten bestaan tussen ICS en depressie bij de ZvP en dat het neurodegeneratieve proces van de ZvP bij beide een belangrijke rol speelt. In dit review-artikel geven we een overzicht van de recente literatuur over de neurobiologie van ICS bij de ZvP en bespreken we potentiële neurobiologische risicofactoren en de daaruit voortkomende klinische implicaties.

Abstract

Impulse control disorders (ICD) are relatively common neuropsychiatric features of Parkinson’s disease (PD) that are characterized by the inability to suppress an impulse, drive or urge that can have severe consequences for the patients themselves and/or their surroundings. It is therefore important to screen PD patients who are at risk for developing ICD. In PD, ICD development seems to depend on an interaction between dopamine replacement therapy and pre-existent individual vulnerability. Although a number of demographic and clinical risk factors have already been identified, the pathophysiology of ICD in PD has not yet been fully elucidated. There are strong indications that a dysfunctional limbic frontal striatal circuit, that subserves functions in motivation and reward, lies at the root of ICD development in PD. Recent studies show that there are pathophysiological similarities between PD-related ICD and depression and that the neurodegenerative process of PD is implicated in both conditions. In this review article we give an overview of the recent literature on the neurobiology of ICD in PD and discuss potential neurobiological risk factors and the resulting clinical implications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figuur 1
Figuur 2

Literatuur

  • Aarsland, D., Pahlhagen, S. et al. (2012). Depression in Parkinson disease − epidemiology, mechanisms and management. Nature Reviews Neurology, 8,1, 35–47.

    Google Scholar 

  • Aarts, E., Helmich, R.C. et al. (2012). Aberrant reward processing in Parkinson’s disease is associated with dopamine cell loss. NeuroImage, 59,4, 3339–3346.

    Article  Google Scholar 

  • American Psychiatric Association (1994). Diagnostic and statistical manual of mental disorders. Washington, DC.

    Google Scholar 

  • Antonini, A. & Cilia R. (2009). Behavioural adverse effects of dopaminergic treatments in Parkinson’s disease: incidence, neurobiological basis, management and prevention. Drug safety: an international journal of medical toxicology and drug experience, 32,6, 475–488.

    Article  Google Scholar 

  • Ballanger, B., Klinger, H. et al. (2012). Role of serotonergic 1A receptor dysfunction in depression associated with Parkinson’s disease. Movement disorders: official journal of the Movement Disorder Society, 27,1, 84–9.

    Article  Google Scholar 

  • Black, D.W. (2007). Compulsive buying disorder: a review of the evidence. CNS Spectrums, 12,2, 124–132.

    Google Scholar 

  • Bodi, N., Keri, S. et al. (2009). Reward-learning and the novelty-seeking personality: a between- and within-subjects study of the effects of dopamine agonists on young Parkinson’s patients. Brain, 132,Pt 9, 2385–2395.

    Article  Google Scholar 

  • Buckholtz, J.W., Treadway, M.T. et al. (2010). Dopaminergic network differences in human impulsivity. Science, 329,5991, 532.

    Article  Google Scholar 

  • Cardoso, E. F., Maia, F.M. et al. (2009). Depression in Parkinson’s disease: convergence from voxel-based morphometry and functional magnetic resonance imaging in the limbic thalamus. Neuroimage, 47,2, 467–472.

    Article  Google Scholar 

  • Cilia, R., Ko, J.H. et al. (2010). Reduced dopamine transporter density in the ventral striatum of patients with Parkinson’s disease and pathological gambling. Neurobiology of disease, 39,1, 98–104.

    Article  Google Scholar 

  • Claassen, D.O., Wildenberg, W.P. van 2 et al. (2011). The risky business of dopamine agonists in Parkinson disease and impulse control disorders. Behavioral Neuroscience, 125,4, 492–500.

    Article  Google Scholar 

  • Dalley, J.W. & Roiser, J.P. (2012). Dopamine, serotonin and impulsivity. Neuroscience, 215, 42–58.

    Article  PubMed  CAS  Google Scholar 

  • Dalley, J.W., Fryer, T.D. et al. (2007). Nucleus accumbens D2/3 receptors predict trait impulsivity and cocaine reinforcement. Science, 315,5816, 1267–1270.

    Article  Google Scholar 

  • Eimeren, T. van, Ballanger, B. et al. (2009). Dopamine agonists diminish value sensitivity of the orbitofrontal cortex: a trigger for pathological gambling in Parkinson’s disease? Neuropsychopharmacology, 34,13, 2758–2766.

    Article  Google Scholar 

  • Evans, A.H., Strafella, A.P. et al. (2009). Impulsive and compulsive behaviors in Parkinson’s disease. Movement disorders : official journal of the Movement Disorder Society, 24,11, 1561–1570.

    Article  Google Scholar 

  • Frank, M.J., Seeberger, L.C. et al. (2004). By carrot or by stick: cognitive reinforcement learning in parkinsonism. Science, 306,5703, 1940–1943.

    Article  Google Scholar 

  • Gerfen, C.R., Miyachi, S. et al. (2002). D1 dopamine receptor supersensitivity in the dopamine-depleted striatum results from a switch in the regulation of ERK1/2/MAP kinase. Journal of Neuroscience, 22,12, 5042–5054.

    Google Scholar 

  • Groenewegen, H.J. & Trimble, M. (2007). The ventral striatum as an interface between the limbic and motor systems. CNS spectrums, 12,12, 887–892.

    PubMed  Google Scholar 

  • Haber, S.N. & Knutson, B. (2010). The reward circuit: linking primate anatomy and human imaging. Neuropsychopharmacology: official publication of the American College of Neuropsychopharmacology, 35,1, 4–26.

    Article  Google Scholar 

  • Haber, S.N. & McFarland, N.R. (1999). The concept of the ventral striatum in nonhuman primates. Annals of the New York Academy of Sciences, 877, 33–48.

    Article  PubMed  CAS  Google Scholar 

  • Hesse, S., Meyer, P.M. et al. (2009). Monoamine transporter availability in Parkinson’s disease patients with or without depression. European Journal of Nuclear Medicine and Molecular Imaging, 36,3, 428–435.

    Article  Google Scholar 

  • Heuvel, O.A. van den (2013). Risk prediction and treatment monitoring are crucial for prevention and management of compulsive dopamine use in Parkinson’s disease. Journal of Neurology, Neurosurgery and Psychiatry, 00,1, doi:10.1136/jnnp-2013-305378.

  • Heuvel , O.A. van den, Werf , Y.D. van der et al. (2011). Impulscontrolestoornissen bij de ziekte van Parkinson en de relatie tot andere stoornissen binnen het impulsieve-compulsieve spectrum. Tijdschrift voor psychiatrie, 53,4, 211–222.

    Google Scholar 

  • Hudson, J.I., Hiripi, E. et al. (2007). The prevalence and correlates of eating disorders in the National Comorbidity Survey Replication. Biological Psychiatry, 61,3, 348–358.

    Article  Google Scholar 

  • Johnson, P.S., Madden, G.J. et al. (2011). Effects of acute pramipexole on preference for gambling-like schedules of reinforcement in rats. Psychopharmacology (Berl), 213, 1, 11–18.

    Article  Google Scholar 

  • Joutsa, J., Martikainen, K. et al. (2012). Impulse control disorders and depression in Finnish patients with Parkinson’s disease. Parkinsonism & related disorders, 18,2,155–160.

    Article  Google Scholar 

  • Kano, O., Ikeda, K. et al. (2011). Neurobiology of depression and anxiety in Parkinson’s disease. Parkinson’s disease, 2011, 143547.

  • Martinez, D., Saccone, P.A. et al. (2012). Deficits in dopamine D(2) receptors and presynaptic dopamine in heroin dependence: commonalities and differences with other types of addiction. Biological Psychiatry, 71,3, 192–198.

    Article  Google Scholar 

  • Mayberg, H.S., Starkstein, S.E. et al. (1990). Selective hypometabolism in the inferior frontal lobe in depressed patients with Parkinson’s disease. Annals of neurology, 28,1, 57–64.

    Article  Google Scholar 

  • Meissner, W.G., Frasier, M. et al. (2011). Priorities in Parkinson’s disease research. Nature reviews. Drug discovery, 10,5, 377–393.

    Article  Google Scholar 

  • Mentis, M.J., McIntosh, A.R. et al. (2002). Relationships among the metabolic patterns that correlate with mnemonic, visuospatial, and mood symptoms in Parkinson’s disease. American Journal of Psychiatry, 159,5, 746–754.

    Article  Google Scholar 

  • Narendran, R., Martinez, D. et al. (2011). Imaging of dopamine D2/3 agonist binding in cocaine dependence: a [11C]NPA positron emission tomography study. Synapse, 65,12, 1344–1349.

    Article  Google Scholar 

  • Neve, K.A., Seamans, J.K. et al. (2004). Dopamine receptor signaling. Journal of receptor and signal transduction research, 24,3, 165–205.

    Google Scholar 

  • O’Sullivan, S.S., Wu, K. et al. (2011). Cue-induced striatal dopamine release in Parkinson’s disease-associated impulsive-compulsive behaviours. Brain: a journal of neurology, 134,Pt 4, 969–978.

    Article  Google Scholar 

  • Pattij, T. & Vanderschuren, L.J. (2008). The neuropharmacology of impulsive behaviour. Trends in pharmacological sciences, 29,4, 192–199.

    Article  Google Scholar 

  • Potenza, M.N., Steinberg, M.A. et al. (2003). Gambling urges in pathological gambling: a functional magnetic resonance imaging study. Archives of General Psychiatry, 60,8, 828–836.

    Article  Google Scholar 

  • Prieto, G.A., Perez-Burgos, A. et al. (2009). Dopamine D(2)-class receptor supersensitivity as reflected in Ca2+ current modulation in neostriatal neurons. Neuroscience, 164,2, 345–350.

    Article  Google Scholar 

  • Prieto, G.A., Perez-Burgos, A. et al. (2011). Upregulation of D2-class signaling in dopamine-denervated striatum is in part mediated by D3 receptors acting on Ca V 2.1 channels via PIP2 depletion. Journal of neurophysiology, 105,5, 2260–2274.

    Article  Google Scholar 

  • Ray, N.J., Miyasaki, J.M. et al. (2012). Extrastriatal dopaminergic abnormalities of DA homeostasis in Parkinson’s patients with medication-induced pathological gambling: a [11C] FLB-457 and PET study. Neurobiology of disease, 48,3, 519–525.

    Article  Google Scholar 

  • Remy, P., Doder, M. et al. (2005). Depression in Parkinson’s disease: loss of dopamine and noradrenaline innervation in the limbic system. Brain : a journal of neurology, 128,Pt 6, 1314–1322.

    Article  Google Scholar 

  • Rokosik, S.L. & Napier, T.C. (2012). Pramipexole-induced increased probabilistic discounting: comparison between a rodent model of Parkinson’s disease and controls. Neuropsychopharmacology, 37,6, 1397–1408.

    Article  Google Scholar 

  • Scherfler, C., Schwarz, J. et al. (2007). Role of DAT-SPECT in the diagnostic work up of parkinsonism. Movement Disorders, 22,9, 1229–1238.

    Article  Google Scholar 

  • Sokoloff, P., Giros, B. et al. (1990). Molecular cloning and characterization of a novel dopamine receptor (D3) as a target for neuroleptics. Nature, 347,6289, 146–151.

    Article  Google Scholar 

  • Steeves, T.D., Miyasaki, J. et al. (2009). Increased striatal dopamine release in Parkinsonian patients with pathological gambling: a [11C] raclopride PET study. Brain: a journal of neurology, 132,Pt 5, 1376–1385.

    Article  Google Scholar 

  • Voon, V., Gao, J. et al. (2011). Dopamine agonists and risk: impulse control disorders in Parkinson’s disease. Brain: a journal of neurology, 134,Pt 5, 1438–1446.

    Article  Google Scholar 

  • Voon, V., Mehta, A.R. et al. (2011). Impulse control disorders in Parkinson’s disease: recent advances. Current opinion in neurology, 24,4, 324–330.

    Article  Google Scholar 

  • Voon, V., Pessiglione, M. et al. (2010). Mechanisms underlying dopamine-mediated reward bias in compulsive behaviors. Neuron, 65,1, 135–142.

    Article  Google Scholar 

  • Vriend, C., Nordbeck, A.H. et al. (2013). Reduced dopamine transporter binding predates impulse control disorders in Parkinson’s disease (manuscript onder review). Amsterdam, Nederland, VU medisch centrum.

    Google Scholar 

  • Vriend, C., Raijmakers, P. et al. (2013). Depressive symptoms in Parkinson’s disease are related to reduced [123I]FP-CIT binding in the caudate nucleus. Journal of Neurology, Neurosurgery and Psychiatry (in druk).

  • Weintraub, D., Koester, J. et al. (2010). Impulse control disorders in Parkinson disease: a cross-sectional study of 3090 patients. Archives of neurology, 67,5, 589–595.

    Article  PubMed  Google Scholar 

  • Wolters, E., Werf, Y.D. van 2 et al. (2008). Parkinson’s diseaserelated disorders in the impulsive-compulsive spectrum. Journal of Neurology, 255,Suppl 5, 48–56.

    Article  Google Scholar 

  • Wu, K., Politis, M. et al. (2009). Parkinson disease and impulse control disorders: a review of clinical features, pathophysiology and management. Postgraduate medical journal, 85,1009, 590–596.

    Article  Google Scholar 

  • Ye, Z., Hammer, A. et al. (2011). Pramipexole modulates the neural network of reward anticipation. Human Brain Mapping, 32,5, 800–811.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Drs.C. Vriend, promovendus afdeling PsychiatrieVU medisch centrum (VUmc), Amsterdam, p/a Medische Faculteit, afdeling anatomie en neurowetenschappen, G102-b, van der Boechorststraat 7, 1081 BT, Amsterdam, e-mail: c.vriend@vumc.nl.AfdelingPsychiatrie.VU medisch centrum (VUmc), Amsterdam, Neuroscience Campus Amsterdam, VU/VUmc, Amsterdam; dr. Y.D. van der Wetf, Afdeling Anatomie en Neurowetenschappen, VUmc, Amsterdam, Neuroscience Campus Amsterdam, VU/VUmc, Amsterdam, Nederlands Instituut voor Neurowetenschappen, Koninklijke NederiandseAkademie van Wetenschappen (KNAW), Amsterdam; dr. T. Pattij,Afdeling Anatomie en Neurowetenschappen, VUmc, Amsterdam, Neuroscience Campus Amsterdam, VU/VUmc, Amsterdam; dr. P.Voorn, Afdeling Anatomie en Neurowetenschappen, VUmc, Amsterdam; prof dr.J. Booij, Afdeling nucleaire geneeskunde, Academisch Medisch Centrum (AMq, Amsterdam; mw. drs. S. Rutten, Afdeling Psychiatrie, VU medisch centrum (VUmc), Amsterdam, Afdeling Anatomie en Neurowetenschappen, VUmc, Amsterdam; prof dr. H.W Berendse, Neuroscience Campus Amsterdam, VU/VUmc, Amsterdam, Afdeling Neurologie, VUmc, Amsterdam; mw. dr. OA van den Heuvel,Afdeling Psychiatrie, VU medisch centrum (VUmc), Amsterdam, Afdeling Anatomie en Neurowetenschappen, VUmc, Amsterdam, Neuroscience Campus Amsterdam, VU/VUmc, Amsterdam.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vriend, C., van der Werf, Y., Pattij, T. et al. De ziekte van Parkinson: van geremde motoriek tot ontremde impulsen. NEUROPRAXIS 17, 106–112 (2013). https://doi.org/10.1007/s12474-013-0020-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12474-013-0020-1

Navigation