Skip to main content
Log in

Arabidopsis histone methyltransferase SET DOMAIN GROUP2 is required for regulation of various hormone responsive genes

  • Original Article
  • Published:
Journal of Plant Biology Aims and scope Submit manuscript

Abstract

Histone modifications are known to play important roles in plant development through epigenetic regulation of gene expression. How these modifications regulate downstream targets in response to various environmental cues and developmental stimuli is still largely unknown. Here, we provide evidence that Arabidopsis histone H3K4 methyltransferase SET DOMAIN GROUP2 (SDG2) is required for full activation of hormone responsive genes upon hormone treatment. The pleiotropic phenotypes of sdg2 were closely related to those of auxin deficient mutants and RNA analysis revealed that expression of early hormone responsive genes was significantly reduced in sdg2-5. By ChIP analyses we found that H3K4 tri-methylations on chromatin region of hormone responsive genes such as SAUR27, KIN1 and GASA6 were enriched in WT upon hormone treatments whereas these enrichments were largely abolished in sdg2-5. After hormone treatment, chromatin regions of responsive genes that accumulated H3K4me3 in WT overlapped with those displaying decreased H3K4me3 levels in sdg2-5. Histone H3K4 di-methylation levels on tested genes were increased rather than decreased in sdg2-5, suggesting that SDG2 mediates transition of H3K4me2 to H3K4me3. Taken together, we conclude that the SDG2 activity is required to regulate the expression of hormone responsive genes via histone H3K4 tri-methylation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Alvarez-Venegas R, Abdallat AA, Guo M, Alfano JR, Avramova Avramova Z (2007) Epigenetic control of a transcription factor at the cross section of two antagonistic pathways. Epigenetics 2:106–113

    Article  PubMed  Google Scholar 

  • Alvarez-Venegas R, Avramova Z (2001) Two Arabidopsis homologs of the animal trithorax genes, a new structural domain is a signature feature of the trithorax gene family. Gene 271:215–221

    Article  PubMed  CAS  Google Scholar 

  • Alvarez-Venegas R, Avramova Z (2002) SET-domain proteins of the Su(var) 3–9, E(z) and trithorax families. Gene 285:25–37

    Article  PubMed  CAS  Google Scholar 

  • Alvarez-Venegas R, Avramova Z (2005) Methylation patterns of histone H3 Lys 4, Lys 9 and Lys 27 in transcriptionally active and inactive Arabidopsis genes and in atx1 mutants. Nucleic Acids Res 33:5199–5207

    Article  PubMed  CAS  Google Scholar 

  • Alvarez-Venegas R, Pien S, Sadder M, Witmer X, Grossniklaus U, Avramova Z (2003) ATX-1, an Arabidopsis Homolog of Trithorax, Activates Flower Homeotic Genes. Curr Biol 13:627–637

    Article  PubMed  CAS  Google Scholar 

  • Anzola JM, Sieberer T, Ortbauer M, Butt H, Korbei B, Weinhofer I, Müllner AE, Luschnig C (2010) Putative Arabidopsis Transcriptional Adaptor Protein PROPORZ1. is required to modulate histone acetylation in response to auxin. Proc Natl Acad Sci USA 107:10308–10313

    Article  PubMed  CAS  Google Scholar 

  • Bannister AJ, Schneider R, Kouzarides T (2002) Histone Methylation, Dynamic or Static? Cell 109:801–806

    Article  PubMed  CAS  Google Scholar 

  • Baumbusch LO, Thorstensen T, Krauss V, Fischer A, Naumann K, Assalkhou R, Schulz I, Reuter G, Aalen RB (2001) The Arabidopsis thaliana genome contains at least 29 active genes encoding SET domain proteins that can be assigned to four evolutionarily conserved classes. Nucleic Acids Res 29:4319–4333

    Article  PubMed  CAS  Google Scholar 

  • Barski A, Cuddapah S, Cui K, Roh TY, Schones DE, Wang Z, Wei G, Chepelev I, Zhao K (2007) High-resolution profiling of histone methylations in the human genome. Cell 129:823–837

    Article  PubMed  CAS  Google Scholar 

  • Berr A, Xu., Gao J, Cognat V, Steinmetz A, Dong A, Shen W-H (2009) SET DOMAIN GROUP25 encodes a histone methyltransferase and is involved in FLOWERING LOCUS C activation and repression of flowering. Plant Physiol 151:1476–1485

    Article  PubMed  CAS  Google Scholar 

  • Berr A, McCallum EJ, Ménard R, Meyer D, Fuchs J, Dong A, Shen W-H (2010) Arabidopsis SET DOMAIN GROUP2 is required for H3K4 tri-methylation and is crucial for both sporophyte and gametophyte development. Plant Cell 22:3232–3248

    Article  PubMed  CAS  Google Scholar 

  • Cecchetti V, Altamura MM, Falasca G, Costantino P, Cardarelli M (2008) Auxin regulates arabidopsis anther dehiscence, pollen maturation, and filament elongation. Plant Cell 20:1760–1774

    Article  PubMed  CAS  Google Scholar 

  • Celenza JL, Quiel JA, Smolen GA, Merrikh H, Silvestro AR, Normanly J, Bender J (2005) The Arabidopsis ATR1 Myb transcription factor controls indolic glucosinolate homeostasis. Plant Physiol 137:253–262

    Article  PubMed  CAS  Google Scholar 

  • Chen LT, Luo M, Wang YY, Wu K (2010) Involvement of Arabidopsis histone deacetylase HDA6 in ABA and salt stress response. J Exp Bot 61:3345–3353

    Article  PubMed  CAS  Google Scholar 

  • Cheng Y, Dai X, Zhao Y (2006) Auxin biosynthesis by the YUCCA flavin monooxygenases controls the formation of floral organs and vascular tissues in Arabidopsis. Genes Dev 20:1790–1799

    Article  PubMed  CAS  Google Scholar 

  • Cheng Y, Dai X, Zhao Y (2007) Auxin synthesized by the YUCCA flavin monooxygenases is essential for embryogenesis and leaf formation in arabidopsis. Plant Cell 19:2430–2439

    Article  PubMed  CAS  Google Scholar 

  • Chinnusamy V, Gong Z, Zhu JK (2008) Abscisic acid-mediated epigenetic processes in plant development and stress responses. J Int Plant Biol 50:1187–1195

    Article  CAS  Google Scholar 

  • Cohen R, Schocken J, Kaldis A, Vlachonasios KE, Hark AT, McCain ER (2009) The histone acetyltransferase GCN5 affects the inflorescence meristem and stamen development in Arabidopsis. Planta 230:1207–1221

    Article  PubMed  CAS  Google Scholar 

  • Dreijerink KM, Mulder KW, Winkler GS, Hoppener JW, Lips CJ, Timmers HT (2006) Menin links estrogen receptor activation to histone H3K4 tri-methylation. Cancer Res 66:4929–4935.

    Article  PubMed  CAS  Google Scholar 

  • Guo L, Yu Y, Law JA, Zhang X (2010) SET DOMAIN GROUP2 is the major histone H3 lysie 4 tri-methyltransferase in Arabidopsis. Proc Nat Acad Sci USA 107:18557–18562

    Article  PubMed  CAS  Google Scholar 

  • Jang IC, Chung PJ, Hemmes H, Jung C, Chua NH (2011) Rapid and reversible light-mediated chromatin modifications of Arabidopsis phytochrome A locus. Plant Cell 23:459–470

    Article  PubMed  CAS  Google Scholar 

  • He Y, Amasino RM (2005) Role of chromatin modification in floweringtime control. Trends Plant Sci 10:30–35

    Article  PubMed  CAS  Google Scholar 

  • Jenuwein T, Allis CD (2001) Translating the histone code. Science 293:1074–1080.

    Article  PubMed  CAS  Google Scholar 

  • Jullien PE, Katz A, Oliva M, Ohad N, Berger F (2006) Polycomb group complexes self-regulate imprinting of the Polycomb group gene MEDEA in Arabidopsis. Curr Biol 16:486–492

    Article  PubMed  CAS  Google Scholar 

  • Kim J-M, To TK, Ishida J, Morosawa T, Kawashima M, Matsui A, Toyoda T, Kimura H, Shinozaki K, Seki M (2008) Alterations of lysine modifications on the histone h3 n-tail under drought stress conditions in Arabidopsis thaliana. Plant Cell Physiol 49:1580–1588

    Article  PubMed  CAS  Google Scholar 

  • Kohler, C, Makarevich, G (2006) Epigenetic mechanisms governing seed development in plants. EMBO Rep 7:223–1227

    Article  Google Scholar 

  • Krichevsky A, Zaltsman A, Kozlovsky SV, Tian GW, Citovsky V (2009) Regulation of root elongation by histone acetylation in Arabidopsis. J Mol Biol 385:45–50

    Article  PubMed  CAS  Google Scholar 

  • Lafos M, Kroll P, Hohenstatt ML, Thorpe FL, Clarenz O, Schubert D (2011) Dynamic regulation of H3K27 tri-methylation during Arabidopsis differentiation. PLoS Genet 7:e1002040

    Article  PubMed  CAS  Google Scholar 

  • Locatelli S, Piatti P, Motto M, Rossi V (2009) Chromatin and DNA modifications in the Opaque2-mediated regulation of gene transcription during maize endosperm development. Plant Cell 21:1410–1427

    Article  PubMed  CAS  Google Scholar 

  • Mikkelsen TS, Ku M, Jaffe DB, Issac B, Lieberman E, Giannoukos G, Alvarez P, Brockman W, Kim TK, Koche RP, Lee W, Mendenhall E, O’Donovan A, Presser A, Russ C, Xie X, Meissner A, Wernig M, Jaenisch R, Nusbaum C, Lander ES, Bernstein BE (2007) Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature 448:553–560

    Article  PubMed  CAS  Google Scholar 

  • Nemhauser JL, Hong F, Chory J (2006) Different plant hormones regulate similar processes through largely non-overlapping transcriptional responses. Cell 126:467–475

    Article  PubMed  CAS  Google Scholar 

  • Pien S, Fleury D, Mylne JS, Crevillen P, Inzé D, Avramova Z, Dean C, Grossniklaus U (2008) ARABIDOPSIS TRITHORAX1 dynamically regulates FLOWERING LOCUS C activation via histone 3 lysine 4 tri-methylation. Plant Cell 20:580–588

    Article  PubMed  CAS  Google Scholar 

  • Pontvianne F, Blevins T, Pikaard CS (2010) Arabidopsis histone lysine methyltransferases. Adv Bot Res 53:1–22

    Article  PubMed  CAS  Google Scholar 

  • Shilatifard A (2008) Molecular implementation and physiological roles for histone H3 lysine 4 methylation. Curr Opi Cell Biol 20:341–348

    Article  CAS  Google Scholar 

  • Sims Iii RJ, Nishioka K, Reinberg D (2003) Histone lysine methylation, a signature for chromatin function. Trends Genet 19:629–639

    Article  Google Scholar 

  • Song CP, Agarwal M, Ohta M, Guo Y, Halfter U, Wang P, Zhu JK (2005) Role of an Arabidopsis AP2/EREBP-type transcriptional repressor in abscisic acid and drought stress responses. Plant Cell 17:2384–2396

    Article  PubMed  CAS  Google Scholar 

  • Springer NM, Napoli CA, Selinger DA, Pandey R, Cone KC, Chandler VL, Kaeppler HF, Kaeppler SM (2003) Comparative analysis of set domain proteins in maize and arabidopsis reveals multiple duplications preceding the divergence of monocots and dicots. Plant Physiol 132:907–925

    Article  PubMed  CAS  Google Scholar 

  • Sridha S, Wu K (2006) Identification of AtHD2C as a novel regulator of abscisic acid responses in Arabidopsis. Plant J 46:124–133

    Article  PubMed  CAS  Google Scholar 

  • Strahl BD, Allis CD (2000) The language of covalent histone modifications. Nature 403:41–45

    Article  PubMed  CAS  Google Scholar 

  • Sun B, Xu Y, Ng KH, Ito T (2009) A timing mechanism for stem cell maintenance and differentiation in the Arabidopsis floral meristem. Genes Dev 23:1791–1804

    Article  PubMed  CAS  Google Scholar 

  • Sung S, Amasino RM (2004) Vernalization in Arabidopsis thaliana is mediated by the PHD finger protein VIN3. Nature 427:159–164

    Article  PubMed  CAS  Google Scholar 

  • Tamada Y, Yun JY, Woo SC, Amasino RM (2009) ARABIDOPSIS TRITHORAX-RELATED7 is required for methylation of lysine 4 of histone H3 and for transcriptional activation of FLOWERING LOCUS C. Plant Cell 21:3257–3269

    Article  PubMed  CAS  Google Scholar 

  • Tan X, Calderon-Villalobos LIA, Sharon M, Zheng C, Robinson CV, Estelle M, Zheng N (2007) Mechanism of auxin perception by the TIR1 ubiquitin ligase. Nature 446:640–645

    Article  PubMed  CAS  Google Scholar 

  • Tanaka M, Kikuchi A, Kamada H (2008) The Arabidopsis histone deacetylases HDA6 and HDA19 contribute to the repression of embryonic properties after germination. Plant Physiol 146:149–161

    Article  PubMed  CAS  Google Scholar 

  • To TK, Nakaminami K, Kim JM, Morosawa T, Ishida J, Tanaka M, Yokoyama S, Shinozaki K, Seki M (2011) Arabidopsis HDA6 is required for freezing tolerance. Biochem Biophys Res Comm 406:414–419

    Article  PubMed  CAS  Google Scholar 

  • Tsuji H, Saika H, Tsutsumi N, Hirai A, Nakazono M (2006) Dynamic and reversible changes in histone H3-Lys4 methylation and H3 acetylation occurring at submergence-inducible genes in rice. Plant Cell Physiol 47:995–1003

    Article  PubMed  CAS  Google Scholar 

  • Wu K, Zhang L, Zhou C, Yu CW, Chaikam V (2008) HDA6 is required for jasmonate response, senescence and flowering in Arabidopsis. J Exp Bot 59:225–234

    Article  PubMed  CAS  Google Scholar 

  • Yin H, Zhang X, Liu J, Wang Y, He J, Yang T, Hong X, Yang Q, Gong Z (2009) Epigenetic regulation, somatic homologous recombination, and abscisic acid signaling are influenced by DNA polymerase mutation in Arabidopsis. Plant Cell 21:386–402

    Article  PubMed  CAS  Google Scholar 

  • Yu X, Li L, Guo M, Chory J, Yin Y (2008) Modulation of brassinosteroidregulated gene expression by Jumonji domain-containing proteins ELF6 and REF6 in Arabidopsis. Proc Nat Acad Sci USA 105:7618–7623

    Article  PubMed  CAS  Google Scholar 

  • Yun J-Y, Tamada Y, Kang YE, Amasino RM (2012) ARABIDOPSIS TRITHORAX-RELATED3/SET DOMAIN GROUP2 is Required for the Winter-Annual Habit of Arabidopsis thaliana. Plant Cell Physiol 53:834–846

    Article  PubMed  CAS  Google Scholar 

  • Zhang X, Bernatavichute Y, Cokus S, Pellegrini M, Jacobsen S (2009) Genome-wide analysis of mono-, di- and tri-methylation of histone H3 lysine 4 in Arabidopsis thaliana. Genome Biol 10:R62

    Article  PubMed  Google Scholar 

  • Zhao Y, Hull AK, Gupta NR, Goss KA, Alonso J, Ecker JR, Normanly J, Chory J, Celenza JL (2002) Trp-dependent auxin biosynthesis in Arabidopsis, involvement of cytochrome P450s CYP79B2 and CYP79B3. Genes Dev 16:3100–3112

    Article  PubMed  CAS  Google Scholar 

  • Zhou C, Zhang L, Duan J, Miki B, Wu K (2005) HISTONE DEACETYLASE19 is involved in jasmonic acid and ethylene signaling of pathogen response in Arabidopsis. Plant Cell 17:1196–1204

    Article  PubMed  CAS  Google Scholar 

  • Zhu J, Jeong JC, Zhu Y, Sokolchik I, Miyazaki S, Zhu J-K, Hasegawa PM, Bohnert HJ, Shi H, Yun D-J, Bressan RA (2008) Involvement of Arabidopsis HOS15 in histone deacetylation and cold tolerance. Proc Nat Acad Sci USA 105:4945–4950

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nam-Hai Chua.

Additional information

These authors contributed equally in this work.

Electronic supplementary material

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, S., Lee, J., Yang, JY. et al. Arabidopsis histone methyltransferase SET DOMAIN GROUP2 is required for regulation of various hormone responsive genes. J. Plant Biol. 56, 39–48 (2013). https://doi.org/10.1007/s12374-012-0320-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12374-012-0320-7

Key words

Navigation