Skip to main content
Log in

Cerebellar Theta Frequency Transcranial Pulsed Stimulation Increases Frontal Theta Oscillations in Patients with Schizophrenia

  • Original Paper
  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

Cognitive dysfunction is a pervasive and disabling aspect of schizophrenia without adequate treatments. A recognized correlate to cognitive dysfunction in schizophrenia is attenuated frontal theta oscillations. Neuromodulation to normalize these frontal rhythms represents a potential novel therapeutic strategy. Here, we evaluate whether noninvasive neuromodulation of the cerebellum in patients with schizophrenia can enhance frontal theta oscillations, with the future goal of targeting the cerebellum as a possible therapy for cognitive dysfunction in schizophrenia. We stimulated the midline cerebellum using transcranial pulsed current stimulation (tPCS), a noninvasive transcranial direct current that can be delivered in a frequency-specific manner. A single 20-min session of theta frequency stimulation was delivered in nine patients with schizophrenia (cathode on right shoulder). Delta frequency tPCS was also delivered as a control to evaluate for frequency-specific effects. EEG signals from midfrontal electrode Cz were analyzed before and after cerebellar tPCS while patients estimated the passage of 3- and 12-s intervals. Theta oscillations were significantly larger following theta frequency cerebellar tPCS in the midfrontal region, which was not seen with delta frequency stimulation. As previously reported, patients with schizophrenia showed a baseline reduction in accuracy estimating 3- and 12-s intervals relative to control subjects, which did not significantly improve following a single-session theta or delta frequency cerebellar tPCS. These preliminary results suggest that single-session theta frequency cerebellar tPCS may modulate task-related oscillatory activity in the frontal cortex in a frequency-specific manner. These preliminary findings warrant further investigation to evaluate whether multiple sessions delivered daily may have an impact on cognitive performance and have therapeutic implications for schizophrenia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. McGrath J, Saha S, Chant D, Welham J. Schizophrenia: a concise overview of incidence, prevalence, and mortality. Epidemiol Rev. 2008;30:67–76. https://doi.org/10.1093/epirev/mxn001.

    Article  PubMed  Google Scholar 

  2. Andreasen NC, Paradiso S, O’Leary DS. “Cognitive dysmetria” as an integrative theory of schizophrenia: a dysfunction in cortical-subcortical-cerebellar circuitry? Schizophr Bull. 1998;24:203–18.

    Article  CAS  PubMed  Google Scholar 

  3. Carroll CA, O’Donnell BF, Shekhar A, Hetrick WP. Timing dysfunctions in schizophrenia span from millisecond to several-second durations. Brain Cogn. 2009;70:181–90.

    Article  PubMed  Google Scholar 

  4. Green MF, Harvey PD. Cognition in schizophrenia: past, present, and future. Schizophr Res Cogn. 2014;1:e1–9. https://doi.org/10.1016/j.scog.2014.02.001.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Ho BC, Nopoulos P, Flaum M, Arndt S, Andreasen NC. Two-year outcome in first-episode schizophrenia: predictive value of symptoms for quality of life. Am J Psychiatry. 1998;155:1196–201.

    Article  CAS  PubMed  Google Scholar 

  6. Ward RD, Kellendonk C, Kandel ER, Balsam PD. Timing as a window on cognition in schizophrenia. Neuropharmacology. 2011;62:1175–81. https://doi.org/10.1016/j.neuropharm.2011.04.014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Andreasen NC, O’Leary DS, Flaum M, Nopoulos P, Watkins GL, Boles Ponto LL, et al. Hypofrontality in schizophrenia: distributed dysfunctional circuits in neuroleptic-naïve patients. Lancet. 1997;349:1730–4.

    Article  CAS  PubMed  Google Scholar 

  8. Carter CS, Perlstein W, Ganguli R, Brar J, Mintun M, Cohen JD. Functional hypofrontality and working memory dysfunction in schizophrenia. 2014. Available at: http://ajp.psychiatryonline.org/doi/10.1176/ajp.155.9.1285 [Accessed March 27, 2015].

  9. Parker KL, Kim Y, Kelley RM, Nessler AJ, Chen K-H, Muller-Ewald VA, et al. Delta-frequency stimulation of cerebellar projections can compensate for schizophrenia-related medial frontal dysfunction. Mol Psychiatry. 2017;22:647–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Andreasen NC, Pierson R. The role of the cerebellum in schizophrenia. Biol Psychiatry. 2008;64:81–8. https://doi.org/10.1016/j.biopsych.2008.01.003.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Repovs G, Csernansky JG, Barch DM. Brain network connectivity in individuals with schizophrenia and their siblings. Biol Psychiatry. 2011;69:967–73. https://doi.org/10.1016/j.biopsych.2010.11.009.

    Article  PubMed  Google Scholar 

  12. Abi-Dargham A, Mawlawi O, Lombardo I, Gil R, Martinez D, Huang Y, et al. Prefrontal dopamine D1 receptors and working memory in schizophrenia. J Neurosci. 2002;22:3708–19.

    Article  CAS  PubMed  Google Scholar 

  13. Koziol LF, Budding D, Andreasen N, D’Arrigo S, Bulgheroni S, Imamizu H, et al. Consensus paper: the cerebellum’s role in movement and cognition. Cerebellum. 2013. https://doi.org/10.1007/s12311-013-0511-x.

  14. Schmahmann JD. From movement to thought: anatomic substrates of the cerebellar contribution to cognitive processing. Hum Brain Mapp. 1996;4:174–98. https://doi.org/10.1002/(SICI)1097-0193(1996)4:3<174::AID-HBM3>3.0.CO;2-0.

    Article  CAS  PubMed  Google Scholar 

  15. Schmahmann JD. Dysmetria of thought: clinical consequences of cerebellar dysfunction on cognition and affect. Trends Cogn Sci (Regul Ed). 1998;2:362–71.

    Article  CAS  Google Scholar 

  16. Schutter DJLG, van Honk J. An electrophysiological link between the cerebellum, cognition and emotion: frontal theta EEG activity to single-pulse cerebellar TMS. Neuroimage. 2006;33:1227–31. https://doi.org/10.1016/j.neuroimage.2006.06.055.

    Article  PubMed  Google Scholar 

  17. Stoodley CJ. The cerebellum and cognition: evidence from functional imaging studies. Cerebellum. 2011;11:352–65. https://doi.org/10.1007/s12311-011-0260-7.

    Article  Google Scholar 

  18. Strick PL, Dum RP, Fiez JA. Cerebellum and nonmotor function. Annu Rev Neurosci. 2009;32:413–34. https://doi.org/10.1146/annurev.neuro.31.060407.125606.

    Article  CAS  PubMed  Google Scholar 

  19. Jurjus GJ, Weiss KM, Jaskiw GE. Schizophrenia-like psychosis and cerebellar degeneration. Schizophr Res. 1994;12:183–4. https://doi.org/10.1016/0920-9964(94)90076-0.

    Article  CAS  PubMed  Google Scholar 

  20. Nopoulos PC, Ceilley JW, Gailis EA, Andreasen NC. An MRI study of cerebellar vermis morphology in patients with schizophrenia: evidence in support of the cognitive dysmetria concept. Biol Psychiatry. 1999;46:703–11.

    Article  CAS  PubMed  Google Scholar 

  21. Sandyk R. Psychotic behavior associated with cerebellar pathology. Int J Neurosci. 1993;71:1–7.

    Article  CAS  PubMed  Google Scholar 

  22. Tavano A, Grasso R, Gagliardi C, Triulzi F, Bresolin N, Fabbro F, et al. Disorders of cognitive and affective development in cerebellar malformations. Brain. 2007;130:2646–60. https://doi.org/10.1093/brain/awm201.

    Article  PubMed  Google Scholar 

  23. Andreasen NC, O’Leary DS, Cizadlo T, Arndt S, Rezai K, Ponto LL, et al. Schizophrenia and cognitive dysmetria: a positron-emission tomography study of dysfunctional prefrontal-thalamic-cerebellar circuitry. Proc Natl Acad Sci U S A. 1996;93:9985–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Rüsch N, Spoletini I, Wilke M, Bria P, Di Paola M, Di Iulio F, et al. Prefrontal-thalamic-cerebellar gray matter networks and executive functioning in schizophrenia. Schizophr Res. 2007;93:79–89. https://doi.org/10.1016/j.schres.2007.01.029.

    Article  PubMed  Google Scholar 

  25. Middleton FA, Strick PL. Basal ganglia and cerebellar loops: motor and cognitive circuits. Brain Res Rev. 2000;31:236–50. https://doi.org/10.1016/S0165-0173(99)00040-5.

    Article  CAS  PubMed  Google Scholar 

  26. Ferrucci R, Cortese F, Bianchi M, Pittera D, Turrone R, Bocci T, et al. Cerebellar and motor cortical transcranial stimulation decrease levodopa-induced dyskinesias in Parkinson’s disease. Cerebellum. 2016;15:43–7. https://doi.org/10.1007/s12311-015-0737-x.

    Article  CAS  PubMed  Google Scholar 

  27. Grimaldi G, Argyropoulos GP, Boehringer A, Celnik P, Edwards MJ, Ferrucci R, et al. Non-invasive cerebellar stimulation-a consensus paper. Cerebellum. 2014;13:121–38. https://doi.org/10.1007/s12311-013-0514-7.

    Article  CAS  PubMed  Google Scholar 

  28. Fregni F, Boggio PS, Nitsche M, Bermpohl F, Antal A, Feredoes E, et al. Anodal transcranial direct current stimulation of prefrontal cortex enhances working memory. Exp Brain Res. 2005;166:23–30. https://doi.org/10.1007/s00221-005-2334-6.

    Article  PubMed  Google Scholar 

  29. Jo JM, Kim Y-H, Ko M-H, Ohn SH, Joen B, Lee KH. Enhancing the working memory of stroke patients using tDCS. Am J Phys Med Rehabil. 2009;88:404–9. https://doi.org/10.1097/PHM.0b013e3181a0e4cb.

    Article  PubMed  Google Scholar 

  30. Ferrucci R, Marceglia S, Vergari M, Cogiamanian F, Mrakic-Sposta S, Mameli F, et al. Cerebellar transcranial direct current stimulation impairs the practice-dependent proficiency increase in working memory. J Cogn Neurosci. 2008;20:1687–97. https://doi.org/10.1162/jocn.2008.20112.

    Article  CAS  PubMed  Google Scholar 

  31. Demirtas-Tatlidede A, Freitas C, Cromer JR, Safar L, Ongur D, Stone WS, et al. Safety and proof of principle study of cerebellar vermal theta burst stimulation in refractory schizophrenia. Schizophr Res. 2010;124:91–100. https://doi.org/10.1016/j.schres.2010.08.015.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Garg S, Sinha VK, Tikka SK, Mishra P, Goyal N. The efficacy of cerebellar vermal deep high frequency (theta range) repetitive transcranial magnetic stimulation (rTMS) in schizophrenia: a randomized rater blind-sham controlled study. Psychiatry Res. 2016;243:413–20. https://doi.org/10.1016/j.psychres.2016.07.023.

    Article  PubMed  Google Scholar 

  33. Vasquez A, Malavera A, Doruk D, Morales-Quezada L, Carvalho S, Leite J, et al. Duration dependent effects of transcranial pulsed current stimulation (tPCS) indexed by electroencephalography. Neuromodulation. 2016;19:679–88. https://doi.org/10.1111/ner.12457.

    Article  PubMed  Google Scholar 

  34. Ivry RB, Spencer RM. The neural representation of time. Curr Opin Neurobiol. 2004;14:225–32. https://doi.org/10.1016/j.conb.2004.03.013.

    Article  CAS  PubMed  Google Scholar 

  35. Parker KL, Chen K-H, Kingyon JR, Cavanagh JF, Naryanan NS. Medial frontal ~4 Hz activity in humans and rodents is attenuated in PD patients and in rodents with cortical dopamine depletion. J Neurophysiol. 2015. https://doi.org/10.1152/jn.00412.2015.

  36. Rakitin BC, Gibbon J, Penney TB, Malapani C, Hinton SC, Meck WH. Scalar expectancy theory and peak-interval timing in humans. J Exp Psychol Anim Behav Process. 1998;24:15–33.

    Article  CAS  PubMed  Google Scholar 

  37. Gibbon J, Church RM, Meck WH. Scalar timing in memory. Ann N Y Acad Sci. 1984;423:52–77.

    Article  CAS  PubMed  Google Scholar 

  38. Buhusi CV, Meck WH. What makes us tick? Functional and neural mechanisms of interval timing. Nat Rev Neurosci. 2005;6:755–65. https://doi.org/10.1038/nrn1764.

    Article  CAS  PubMed  Google Scholar 

  39. Parker KL, Chen K-H, Kingyon JR, Cavanagh JF, Narayanan NS. D1-dependent 4 Hz oscillations and ramping activity in rodent medial frontal cortex during interval timing. J Neurosci. 2014;34:16774–83. https://doi.org/10.1523/JNEUROSCI.2772-14.2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Gülekon IN, Turgut HB. The external occipital protuberance: can it be used as a criterion in the determination of sex? J Forensic Sci. 2003;48:513–6.

    Article  PubMed  Google Scholar 

  41. Bocci T, Santarcangelo E, Vannini B, Torzini A, Carli G, Ferrucci R, et al. Cerebellar direct current stimulation modulates pain perception in humans. Restor Neurol Neurosci. 2015;33:597–609. https://doi.org/10.3233/RNN-140453.

    Article  PubMed  Google Scholar 

  42. Bocci T, Ferrucci R, Barloscio D, Parenti L, Cortese F, Priori A, et al. Cerebellar direct current stimulation modulates hand blink reflex: implications for defensive behavior in humans. Phys Rep. 2018;6. https://doi.org/10.14814/phy2.13471.

  43. Ferrucci R, Giannicola G, Rosa M, Fumagalli M, Boggio PS, Hallett M, et al. Cerebellum and processing of negative facial emotions: cerebellar transcranial DC stimulation specifically enhances the emotional recognition of facial anger and sadness. Cognit Emot. 2012;26:786–99. https://doi.org/10.1080/02699931.2011.619520.

    Article  Google Scholar 

  44. Ferrucci R, Brunoni AR, Parazzini M, Vergari M, Rossi E, Fumagalli M, et al. Modulating human procedural learning by cerebellar transcranial direct current stimulation. Cerebellum. 2013;12:485–92. https://doi.org/10.1007/s12311-012-0436-9.

    Article  CAS  PubMed  Google Scholar 

  45. van Driel J, Sligte IG, Linders J, Elport D, Cohen MX. Frequency band-specific electrical brain stimulation modulates cognitive control processes. PLoS One. 2015;10:e0138984. https://doi.org/10.1371/journal.pone.0138984.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Cohen MX. Analyzing neural time series data: theory and practice (issues in clinical and cognitive neuropsychology). The MIT Press; 2014.

  47. Delorme A, Makeig S. EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J Neurosci Methods. 2004;134:9–21. https://doi.org/10.1016/j.jneumeth.2003.10.009.

    Article  Google Scholar 

  48. Cavanagh JF, Frank MJ. Frontal theta as a mechanism for cognitive control. Trends Cogn Sci. 2014;18(8):414-2.

  49. Singh A, Richardson SP, Narayanan N, Cavanagh JF Mid-frontal theta activity is diminished during cognitive control in Parkinson's disease. Neuropsychologia. 2018;117:113-122.

  50. Malapani C, Deweer B, Gibbon J. Separating storage from retrieval dysfunction of temporal memory in Parkinson’s disease. J Cogn Neurosci. 2002;14:311–22. https://doi.org/10.1162/089892902317236920.

    Article  PubMed  Google Scholar 

  51. Ozen S, Sirota A, Belluscio MA, Anastassiou CA, Stark E, Koch C, et al. Transcranial electric stimulation entrains cortical neuronal populations in rats. J Neurosci. 2010;30:11476–85. https://doi.org/10.1523/JNEUROSCI.5252-09.2010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Parazzini M, Rossi E, Ferrucci R, Liorni I, Priori A, Ravazzani P. Modelling the electric field and the current density generated by cerebellar transcranial DC stimulation in humans. Clin Neurophysiol. 2014;125:577–84. https://doi.org/10.1016/j.clinph.2013.09.039.

    Article  PubMed  Google Scholar 

  53. Vöröslakos M, Takeuchi Y, Brinyiczki K, Zombori T, Oliva A, Fernández-Ruiz A, et al. Direct effects of transcranial electric stimulation on brain circuits in rats and humans. Nat Commun. 2018;9:483. https://doi.org/10.1038/s41467-018-02928-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Underwood E. How the body learns to hurt. Science. 2016;354:694. https://doi.org/10.1126/science.354.6313.694.

    Article  CAS  PubMed  Google Scholar 

  55. Halko MA, Farzan F, Eldaief MC, Schmahmann JD, Pascual-Leone A. Intermittent Theta-burst stimulation of the lateral cerebellum increases functional connectivity of the default network. J Neurosci. 2014;34:12049–56. https://doi.org/10.1523/JNEUROSCI.1776-14.2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

K.L.P has received generous funding to complete this research from the Brain & Behavior Foundation Young Investigator NARSAD Award, The Nellie Ball Research Trust, and NIMH K01 MH106824, the University of Iowa Department of Psychiatry, and the Iowa Neuroscience Institute.

Author information

Authors and Affiliations

Authors

Contributions

K.L.P. designed the research; K.L.P. and S.C acquired data; K.L.P., A.S., B.D., and J.K. analyzed data; K.L.P., N.T.T., A.D.B., B.D., and A.S. wrote the manuscript; and all authors provided feedback.

Corresponding author

Correspondence to Krystal L. Parker.

Ethics declarations

Written informed consent was obtained from every subject and all research protocols were approved by the University of Iowa Human Subjects Review Board.

Competing Interests

The authors declare that they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Arun Singh and Nicholas T. Trapp are co-first authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, A., Trapp, N.T., De Corte, B. et al. Cerebellar Theta Frequency Transcranial Pulsed Stimulation Increases Frontal Theta Oscillations in Patients with Schizophrenia. Cerebellum 18, 489–499 (2019). https://doi.org/10.1007/s12311-019-01013-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12311-019-01013-9

Keywords

Navigation