Skip to main content

Advertisement

Log in

Discovery of Transcription Factors Novel to Mouse Cerebellar Granule Cell Development Through Laser-Capture Microdissection

  • Original Paper
  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

Laser-capture microdissection was used to isolate external germinal layer tissue from three developmental periods of mouse cerebellar development: embryonic days 13, 15, and 18. The cerebellar granule cell-enriched mRNA library was generated with next-generation sequencing using the Helicos technology. Our objective was to discover transcriptional regulators that could be important for the development of cerebellar granule cells—the most numerous neuron in the central nervous system. Through differential expression analysis, we have identified 82 differentially expressed transcription factors (TFs) from a total of 1311 differentially expressed genes. In addition, with TF-binding sequence analysis, we have identified 46 TF candidates that could be key regulators responsible for the variation in the granule cell transcriptome between developmental stages. Altogether, we identified 125 potential TFs (82 from differential expression analysis, 46 from motif analysis with 3 overlaps in the two sets). From this gene set, 37 TFs are considered novel due to the lack of previous knowledge about their roles in cerebellar development. The results from transcriptome-wide analyses were validated with existing online databases, qRT-PCR, and in situ hybridization. This study provides an initial insight into the TFs of cerebellar granule cells that might be important for development and provide valuable information for further functional studies on these transcriptional regulators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Leiner HC, Leiner AL, Dow RS. Cognitive and language functions of the human cerebellum. Trends Neurosci. 1993;16(11):444–7. https://doi.org/10.1016/0166-2236(93)90072-T.

    Article  PubMed  CAS  Google Scholar 

  2. Altman J, Bayer S. Development of the cerebellar system in relation to its evolution, structure, and functions. New York: CRC; 1997.

    Google Scholar 

  3. Goldowitz D, Hamre K. The cells and molecules that make a cerebellum. Trends Neurosci. 1998;21(9):375–82. https://doi.org/10.1016/S0166-2236(98)01313-7.

    Article  PubMed  CAS  Google Scholar 

  4. Wechsler-Reya RJ. Analysis of gene expression in the normal and malignant cerebellum. Recent Prog Horm Res. 2003;58(1):227–48. https://doi.org/10.1210/rp.58.1.227.

    Article  PubMed  CAS  Google Scholar 

  5. Alder J, Cho NK, Hatten ME. Embryonic precursor cells from the rhombic lip are specified to a cerebellar granule neuron identity. Neuron. 1996;17(3):389–99. https://doi.org/10.1016/S0896-6273(00)80172-5.

    Article  PubMed  CAS  Google Scholar 

  6. Alcantara S, et al. Netrin 1 acts as an attractive or as a repulsive cue for distinct migrating neurons during the development of the cerebellar system. Development. 2000;127(7):1359–72.

    PubMed  CAS  Google Scholar 

  7. Wingate RJ. The rhombic lip and early cerebellar development. Curr Opin Neurobiol. 2001;11(1):82–8. https://doi.org/10.1016/S0959-4388(00)00177-X.

    Article  PubMed  CAS  Google Scholar 

  8. Swamynathan SK, Katz JP, Kaestner KH, Ashery-Padan R, Crawford MA, Piatigorsky J. Conditional deletion of the mouse Klf4 gene results in corneal epithelial fragility, stromal edema, and loss of conjunctival goblet cells. Mol Cell Biol. 2007;27(1):182–94. https://doi.org/10.1128/MCB.00846-06.

    Article  PubMed  CAS  Google Scholar 

  9. Patapoutian A, Reichardt LF. Roles of Wnt proteins in neural development and maintenance. Curr Opin Neurobiol. 2000;10(3):392–9. https://doi.org/10.1016/S0959-4388(00)00100-8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Wechsler-Reya RJ, Scott MP. Control of neuronal precursor proliferation in the cerebellum by Sonic Hedgehog. Neuron. 1999;22(1):103–14. https://doi.org/10.1016/S0896-6273(00)80682-0.

    Article  PubMed  CAS  Google Scholar 

  11. Fishell G, Hatten M. Astrotactin provides a receptor system for CNS neuronal migration. Development. 1991;113(3):755–65.

    PubMed  CAS  Google Scholar 

  12. Komuro H, Rakic P. Distinct modes of neuronal migration in different domains of developing cerebellar cortex. J Neurosci. 1998;18(4):1478–90.

    Article  PubMed  CAS  Google Scholar 

  13. PORTERFIELD SP, HENDRICH CE. The role of thyroid hormones in prenatal and neonatal neurological development—current perspectives. Endocr Rev. 1993;14(1):94–106. https://doi.org/10.1210/edrv-14-1-94.

    Article  PubMed  CAS  Google Scholar 

  14. Emmert-Buck MR, Bonner RF, Smith PD, Chuaqui RF, Zhuang Z, Goldstein SR, et al. Laser capture microdissection. Science. 1996;274(5289):998–1001. https://doi.org/10.1126/science.274.5289.998.

    Article  PubMed  CAS  Google Scholar 

  15. Bonner RF, et al. Laser capture microdissection: molecular analysis of tissue. Science (New York, NY). 1997;278(5342):1481.

    Article  CAS  Google Scholar 

  16. Consortium TF. A promoter-level mammalian expression atlas. Nature. 2014;507(7493):462–70.

    Article  CAS  Google Scholar 

  17. Espina V, Wulfkuhle JD, Calvert VS, VanMeter A, Zhou W, Coukos G, et al. Laser-capture microdissection. Nat Protoc. 2006;1(2):586–603. https://doi.org/10.1038/nprot.2006.85.

    Article  PubMed  CAS  Google Scholar 

  18. Kanamori-Katayama M, Itoh M, Kawaji H, Lassmann T, Katayama S, Kojima M, et al. Unamplified cap analysis of gene expression on a single-molecule sequencer. Genome Res. 2011;21(7):1150–9. https://doi.org/10.1101/gr.115469.110.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Arnold P, Erb I, Pachkov M, Molina N, van Nimwegen E. MotEvo: integrated Bayesian probabilistic methods for inferring regulatory sites and motifs on multiple alignments of DNA sequences. Bioinformatics. 2012;28(4):487–94. https://doi.org/10.1093/bioinformatics/btr695.

    Article  PubMed  CAS  Google Scholar 

  20. Arner E, Mejhert N, Kulyte A, Balwierz PJ, Pachkov M, Cormont M, et al. Adipose tissue microRNAs as regulators of CCL2 production in human obesity. Diabetes. 2012;61(8):1986–93. https://doi.org/10.2337/db11-1508.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Ha T, Swanson D, Larouche M, Glenn R, Weeden D, Zhang P, et al. CbGRiTS: cerebellar gene regulation in time and space. Dev Biol. 2015;397(1):18–30. https://doi.org/10.1016/j.ydbio.2014.09.032.

    Article  PubMed  CAS  Google Scholar 

  22. Topka S, Glassmann A, Weisheit G, Schüller U, Schilling K. The transcription factor Cux1 in cerebellar granule cell development and medulloblastoma pathogenesis. Cerebellum. 2014;13(6):698–712. https://doi.org/10.1007/s12311-014-0588-x.

    Article  PubMed  CAS  Google Scholar 

  23. Frank CL et al. Regulation of chromatin accessibility and Zic binding at enhancers in the developing cerebellum. Nature Neurosci, 2015.

  24. Green MJ, Myat AM, Emmenegger BA, Wechsler-Reya RJ, Wilson LJ, Wingate RJT. Independently specified Atoh1 domains define novel developmental compartments in rhombomere 1. Development. 2014;141(2):389–98. https://doi.org/10.1242/dev.099119.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Swanson DJ, Goldowitz D. Experimental Sey mouse chimeras reveal the developmental deficiencies of Pax6-null granule cells in the postnatal cerebellum. Dev Biol. 2011;351(1):1–12. https://doi.org/10.1016/j.ydbio.2010.11.018.

    Article  PubMed  CAS  Google Scholar 

  26. Sato A, Sekine Y, Saruta C, Nishibe H, Morita N, Sato Y, et al. Cerebellar development transcriptome database (CDT-DB): profiling of spatio-temporal gene expression during the postnatal development of mouse cerebellum. Neural Netw. 2008;21(8):1056–69. https://doi.org/10.1016/j.neunet.2008.05.004.

    Article  PubMed  Google Scholar 

  27. Banks RE, Dunn MJ, Forbes MA, Stanley A, Pappin D, Naven T, et al. The potential use of laser capture microdissection to selectively obtain distinct populations of cells for proteomic analysis—preliminary findings. Electrophoresis. 1999;20(4–5):689–700.

    Article  PubMed  CAS  Google Scholar 

  28. Sluka P, O'Donnell L, Stanton PG. Stage-specific expression of genes associated with rat spermatogenesis: characterization by laser-capture microdissection and real-time polymerase chain reaction. Biol Reprod. 2002;67(3):820–8. https://doi.org/10.1095/biolreprod.102.004879.

    Article  PubMed  CAS  Google Scholar 

  29. Trogan E, Fisher EA. Laser capture microdissection for analysis of macrophage gene expression from atherosclerotic lesions. Laser Capture Microdissection: Methods and Protocols, 2005: 221–232, DOI: https://doi.org/10.1385/1-59259-853-6:221.

  30. Luo L, Salunga RC, Guo H, Bittner A, Joy KC, Galindo JE, et al. Gene expression profiles of laser-captured adjacent neuronal subtypes. Nat Med. 1999;5(1):117–22. https://doi.org/10.1038/4806.

    Article  PubMed  CAS  Google Scholar 

  31. Cañas RA, et al. Transcriptome analysis in maritime pine using laser capture microdissection and 454 pyrosequencing. Tree Physiol. 2014;34(11):1278–88. https://doi.org/10.1093/treephys/tpt113.

    Article  PubMed  CAS  Google Scholar 

  32. Huang DW, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 2008;4(1):44–57. https://doi.org/10.1038/nprot.2008.211.

    Article  CAS  Google Scholar 

  33. Sunmonu NA, Chen L, Li JY. Misexpression of Gbx2 throughout the mesencephalon by a conditional gain-of-function transgene leads to deletion of the midbrain and cerebellum in mice. Genesis. 2009;47(10):667–73.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Yuan Z, Yao L, Li M, Liu S, He W, Lu Y. Opposing roles for E2F1 in survival and death of cerebellar granule neurons. Neurosci Lett. 2011;499(3):164–9. https://doi.org/10.1016/j.neulet.2011.05.045.

    Article  PubMed  CAS  Google Scholar 

  35. Korhonen P, Huotari V, Soininen H, Salminen A. Glutamate-induced changes in the DNA-binding complexes of transcription factor YY1 in cultured hippocampal and cerebellar granule cells. Mol Brain Res. 1997;52(2):330–3.

    Article  PubMed  CAS  Google Scholar 

  36. Korhonen P, Kyrylenko S, Suuronen T, Salminen A. Changes in DNA binding pattern of transcription factor YY1 in neuronal degeneration. Neurosci Lett. 2005;377(2):121–4. https://doi.org/10.1016/j.neulet.2004.11.085.

    Article  PubMed  CAS  Google Scholar 

  37. Wang VY, Zoghbi HY. Genetic regulation of cerebellar development. Nat Rev Neurosci. 2001;2(7):484–91. https://doi.org/10.1038/35081558.

    Article  PubMed  CAS  Google Scholar 

  38. Aruga J, Minowa O, Yaginuma H, Kuno J, Nagai T, Noda T, et al. Mouse Zic1 is involved in cerebellar development. J Neurosci. 1998;18(1):284–93.

    Article  PubMed  CAS  Google Scholar 

  39. Rubenstein J, Rakic P. Cellular migration and formation of neuronal connections: comprehensive developmental neuroscience. Vol. 2. 2013: Academic Press.

  40. Cheng CW, Yan CHM, Choy SW, Hui MNY, Hui CC, Cheng SH. Zebrafish homologue irx1a is required for the differentiation of serotonergic neurons. Dev Dyn. 2007;236(9):2661–7. https://doi.org/10.1002/dvdy.21272.

    Article  PubMed  CAS  Google Scholar 

  41. Becker M-B, Zülch A, Bosse A, Gruss P. Irx1 and Irx2 expression in early lung development. Mech Dev. 2001;106(1):155–8. https://doi.org/10.1016/S0925-4773(01)00412-9.

    Article  PubMed  CAS  Google Scholar 

  42. Bosse A, Zülch A, Becker MB, Torres M, Gómez-Skarmeta JL, Modolell J, et al. Identification of the vertebrate Iroquois homeobox gene family with overlapping expression during early development of the nervous system. Mech Dev. 1997;69(1):169–81. https://doi.org/10.1016/S0925-4773(97)00165-2.

    Article  PubMed  CAS  Google Scholar 

  43. Christoffels VM, Keijser AGM, Houweling AC, Clout DEW, Moorman AFM. Patterning the embryonic heart: identification of five mouse Iroquois homeobox genes in the developing heart. Dev Biol. 2000;224(2):263–74. https://doi.org/10.1006/dbio.2000.9801.

    Article  PubMed  CAS  Google Scholar 

  44. Díaz-Hernández ME et al. Irx1 and Irx2 are coordinately expressed and regulated by retinoic acid, TGFβ and FGF signaling during chick hindlimb development. 2013.

  45. Choy SW, Cheng CW, Lee ST, Li VWT, Hui MNY, Hui CC, et al. A cascade of irx1a and irx2a controls shh expression during retinogenesis. Dev Dyn. 2010;239(12):3204–14. https://doi.org/10.1002/dvdy.22462.

    Article  PubMed  CAS  Google Scholar 

  46. Zhang D, Wang Y, Dai Y, Wang J, Suo T, Pan H, et al. CIZ1 promoted the growth and migration of gallbladder cancer cells. Tumor Biol. 2015;36(4):2583–91. https://doi.org/10.1007/s13277-014-2876-y.

    Article  CAS  Google Scholar 

  47. Yin J, et al. CIZ1 regulates the proliferation, cycle distribution and colony formation of RKO human colorectal cancer cells. Mol Med Rep. 2013;8(6):1630–4. https://doi.org/10.3892/mmr.2013.1716.

    Article  PubMed  CAS  Google Scholar 

  48. Higgins G, Roper KM, Watson IJ, Blackhall FH, Rom WN, Pass HI, et al. Variant Ciz1 is a circulating biomarker for early-stage lung cancer. Proc Natl Acad Sci. 2012;109(45):E3128–35. https://doi.org/10.1073/pnas.1210107109.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Lan MS, Breslin MB. Structure, expression, and biological function of INSM1 transcription factor in neuroendocrine differentiation. FASEB J. 2009;23(7):2024–33. https://doi.org/10.1096/fj.08-125971.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Bae S, Bessho Y, Hojo M, Kageyama R. The bHLH gene Hes6, an inhibitor of Hes1, promotes neuronal differentiation. Development. 2000;127(13):2933–43.

    PubMed  CAS  Google Scholar 

  51. Jhas S, Ciura S, Belanger-Jasmin S, Dong Z, Llamosas E, Theriault FM, et al. Hes6 inhibits astrocyte differentiation and promotes neurogenesis through different mechanisms. J Neurosci. 2006;26(43):11061–71. https://doi.org/10.1523/JNEUROSCI.1358-06.2006.

    Article  PubMed  CAS  Google Scholar 

  52. El Zein L, Ait-Lounis A, Morle L, Thomas J, Chhin B, Spassky N, et al. RFX3 governs growth and beating efficiency of motile cilia in mouse and controls the expression of genes involved in human ciliopathies. J Cell Sci. 2009;122(17):3180–9. https://doi.org/10.1242/jcs.048348.

    Article  PubMed  CAS  Google Scholar 

  53. Benadiba C et al. The ciliogenic transcription factor RFX3 regulates early midline distribution of guidepost neurons required for corpus callosum development. 2012.

  54. Nakayama A, Murakami H, Maeyama N, Yamashiro N, Sakakibara A, Mori N, et al. Role for RFX transcription factors in non-neuronal cell-specific inactivation of the microtubule-associated protein MAP1A promoter. J Biol Chem. 2003;278(1):233–40. https://doi.org/10.1074/jbc.M209574200.

    Article  PubMed  CAS  Google Scholar 

  55. Fang R, Olds LC, Sibley E. Spatio-temporal patterns of intestine-specific transcription factor expression during postnatal mouse gut development. Gene Expr Patterns. 2006;6(4):426–32. https://doi.org/10.1016/j.modgep.2005.09.003.

    Article  PubMed  CAS  Google Scholar 

  56. Jacquemin P, Durviaux SM, Jensen J, Godfraind C, Gradwohl G, Guillemot F, et al. Transcription factor hepatocyte nuclear factor 6 regulates pancreatic endocrine cell differentiation and controls expression of the proendocrine gene ngn3. Mol Cell Biol. 2000;20(12):4445–54. https://doi.org/10.1128/MCB.20.12.4445-4454.2000.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Dusing MR, Maier EA, Aronow BJ, Wiginton DA. Onecut-2 knockout mice fail to thrive during early postnatal period and have altered patterns of gene expression in small intestine. Physiol Genomics. 2010;42(1):115–25. https://doi.org/10.1152/physiolgenomics.00017.2010.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Klimova L, Antosova B, Kuzelova A, Strnad H, Kozmik Z. Onecut1 and Onecut2 transcription factors operate downstream of Pax6 to regulate horizontal cell development. Dev Biol. 2015;402(1):48–60. https://doi.org/10.1016/j.ydbio.2015.02.023.

    Article  PubMed  CAS  Google Scholar 

  59. Engelkamp D, Rashbass P, Seawright A, van Heyningen V. Role of Pax6 in development of the cerebellar system. Development. 1999;126(16):3585–96.

    PubMed  CAS  Google Scholar 

  60. Hoshino M, Nakamura S, Mori K, Kawauchi T, Terao M, Nishimura YV, et al. Ptf1a, a bHLH transcriptional gene, defines GABAergic neuronal fates in cerebellum. Neuron. 2005;47(2):201–13. https://doi.org/10.1016/j.neuron.2005.06.007.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. Yeung, J. Cairns, S. Tremblay, A. Poon, and J. Wilking for the support and suggestions on experimental design and manuscript preparation. We thank F. Lucero Villegas for animal management. We thank B. Lin, M. Larouche, D. Rains, and J. Boyle for technical support.

Funding

We thank National Institutes of Health, Natural Sciences and Engineering Research Council of Canada, NeuroDevNet, FANTOM OMICS Group, and University of British Columbia for funding.

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to Dan Goldowitz.

Ethics declarations

All experimentation with animals was under an approved Canadian Council on Animal Care research protocol (A12-0190).

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, P.G.Y., Yeung, J., Gupta, I. et al. Discovery of Transcription Factors Novel to Mouse Cerebellar Granule Cell Development Through Laser-Capture Microdissection. Cerebellum 17, 308–325 (2018). https://doi.org/10.1007/s12311-017-0912-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12311-017-0912-3

Keywords

Navigation