Skip to main content
Log in

Molecular Layer Interneurons of the Cerebellum: Developmental and Morphological Aspects

  • Review
  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

During the past 25 years, our knowledge on the development of basket and stellate cells (molecular layer interneurons [MLIs]) has completely changed, not only regarding their origin from the ventricular zone, corresponding to the primitive cerebellar neuroepithelium, instead of the external granular layer, but above all by providing an almost complete account of the genetic regulations (transcription factors and other genes) involved in their differentiation and synaptogenesis. Moreover, it has been shown that MLIs’ precursors (dividing neuroblasts) and not young postmitotic neurons, as in other germinal neuroepithelia, leave the germinative zone and migrate all along a complex and lengthy path throughout the presumptive cerebellar white matter, which provides suitable niches exerting epigenetic influences on their ultimate neuronal identities. Recent studies carried out on the anatomical-functional properties of adult MLIs emphasize the importance of these interneurons in regulating PC inhibition, and point out the crucial role played by electrical synaptic transmission between MLIs as well as ephaptic interactions between them and Purkinje cells at the pinceaux level, in the regulation of this inhibition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Mugnaini E, Floris A. The unipolar brush cell: a neglected neuron of the mammalian cerebellar cortex. J Comp Neurol. 1994;339:174–80.

    Article  CAS  PubMed  Google Scholar 

  2. Cajal SR. Textura del sistema nervioso del hombre y de los vertebrados, vol. 2. Madrid: Imprenta y Librería de Nicolas Moya; 1904.

    Google Scholar 

  3. Bellonci G. Contribuzione all’istologia del cervelletto. Approvata per la stampa negli atti dell'Accademia nella seduta del 6 marzo 1881. p. 49.

  4. Denissenko G. Zur Frage über den Bau der Kleinhirnrinde bei verschiedenen Klassen von Wirbelthieren. Arch Mikrosk Anat. 1877;14:203–42.

    Article  Google Scholar 

  5. Huguenin G. Allgemeine Pathologie der Krankheiten des Nervensystems. Ein Lehrbuch für Aertze und Studirende. 1 Theil. Anatomische Einleitung. Zürich: Ziircher & Furrer; 1873. p. 296.

    Google Scholar 

  6. Meynert T. Vom Gehirne der Saugetiere. In: Stricker S, editor. Handbuch der Lehre von den Geweben des Menschen und der Thiere. Leipzig: Englemann; 1871–1872. Vol.2, pp.694-808. Translated by Henry Power as: The brain of mammals. In: Stricker S. ed. Manual of Human and Comparative Histology. London: The New Sydenham Society. vol. 2. p. 367-537.

  7. Schwalbe GA. Lehrbuch der Neurologie. In: Hoffmann CEE, editor. Lehrbuch der Anatomie des Menschen. Erlangen: Von Eduard Besold; 1881. p. 287–1026.

    Google Scholar 

  8. Golgi C. Sulla fina anatomia del cervelletto umano. Arch Ital Mal Nervose. 1874;11:90–107.

    Google Scholar 

  9. Golgi C. Sulla fine anatomia degli organi centrali del sistema nervoso. Reggio Emilia: Tipografia S. Calderini e Figlio; 1885.

  10. Fusari R. Sull’origine delle fibre nervose nello strato molecolare delle circonvoluzioni cerebellari dell’omo. Atti R Accad Sci Torino. 1883;19:47–51.

    Google Scholar 

  11. Cajal SR. Estructura de los centros neviosos de las aves. Rev Trim Histol Normal Patológica. 1888;1:1–10.

    Google Scholar 

  12. Cajal SR. Sobre las fibras nerviosas de la capa molecular del cerebelo. Rev Trim Histol Norm Patológica. 1888;2:33–41.

    Google Scholar 

  13. Cajal SR. Estructura del cerebelo. Gaz Méd Catalana. 1888;11(267):449–57.

    Google Scholar 

  14. Andersen P, Eccles JC, Voorhoeve PE. Inhibitory synapses on somas of Purkinje cells in the cerebellum. Nature. 1963;199:655–6.

    Article  CAS  PubMed  Google Scholar 

  15. Eccles JC, Llinas R, Sasaki K. The inhibitory interneurons within the cerebellar cortex. Exp Brain Res. 1966;1(1):1–16.

    Article  CAS  PubMed  Google Scholar 

  16. Obata K, Ito M, Ochi R, Sato N. Pharmacological properties of the postsynaptic inhibition by Purkinje cell axons and the action of γ-aminobutyric acid on Deiters neurons. Exp Brain Res. 1967;4:43–57.

    Article  CAS  PubMed  Google Scholar 

  17. Palade GE, Palay SL. Electron microscope observations of interneuronal and neuromuscular synapses. Anat Rec 1954; (Oral presentation) 118: 335. Cited in Palay SL. Synapses in the central nervous system. J Biophys Biochem Cytol. 1956;2(4 Suppl):193–202.

    Google Scholar 

  18. Cajal SR. Sur l’origine et la direction des prolongations nerveuses de la couche moléculaire du cervelet. Int Monatsschr Anat Physiol. 1889;6:158–74.

    Google Scholar 

  19. Mugnaini E. Ultrastructural studies on the cerebellar histogenesis. II.Maturation of nerve cell populations and establishment of connections in the cerebellar cortex of the chick. In: Llinás R, editor. Neurobiology of Cerebellar Evolution and Development. Chicago: AMA-ERF Institute for Biomedical Research; 1969. p. 749–82.

    Google Scholar 

  20. Mugnaini E. The histology and cytology of the cerebellar cotex. In: Larsell O, Jansen J, editors. The Comparative Anatomy and Histology of the Cerebellum: the Human Cerebellum, Cerebellar Connections and Cerebellar Cortex. Minneapolis: University of Minnesota Press; 1972. p. 201–65.

    Google Scholar 

  21. Paula-Barbosa MM, Tavares MA, Ruela M, Barroca H. The distribution of stellate cell descending axons in the rat cerebellum: a Golgi and combined Golgi-electron microscopical study. J Anat. 1983;137:757–64.

    PubMed Central  PubMed  Google Scholar 

  22. Sultan F, Bower JM. Quantitative Golgi study of the rat cerebellar molecular layer interneurons using principal component analysis. J Comp Neurol. 1998;393:353–73.

    Article  CAS  PubMed  Google Scholar 

  23. Schilling K, Oberdick J. The treasury of the commons: Making use of public gene expression resources to better characterize the molecular diversity of inhibitory interneurons in the cerebellar cortex. Cerebellum. 2009;8:477–80.

    Article  CAS  PubMed  Google Scholar 

  24. Taniguchi H, He M, Wu P, Kim S, Paik R, Sugino K, et al. A resource of Cre driver lines for genetic targeting of GABAergic neurons in cerebral cortex. Neuron. 2011;71:995–1013.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Schaper A. The earliest differentiation in the central nervous system of vertebrates. Science. 1897;5:430–1.

    Google Scholar 

  26. Athias M. Recherches sur I'histogenese de I'ecorce du cervelet. J Anat Physiol Norm. 1897;33:372–404.

    Google Scholar 

  27. Miale IL, Sidman RL. An autoradiographic analysis of histogenesis in the mouse cerebellum. Exp Neurol. 1961;4:277–96.

    Article  CAS  PubMed  Google Scholar 

  28. Hallonet MER, Teillet MA, Le Douarin NM. A new approach to the development of the cerebellum provided by the quail-chick marker system. Development. 1990;108:19–31.

    CAS  PubMed  Google Scholar 

  29. Feulgen R, Rossenbeck H. Mikroskopisch-chemischer Nachweis einer Nucleinsaüre von Typus der Thymonucleinsaüre und die darauf beruhende elektive Farbung von Zellkernen in mikroskopischen Präparaten. Hoppe Seyler Z Physiol Chem. 1924;135:203–52.

    Article  CAS  Google Scholar 

  30. Le Douarin NM. Particularités du noyau interphasique chez la caille japonaise (Coturnix coturnix japonica). Utilisation de ces particularités comme marqueur biologique dans les recherches sur les interactions tissulaires et les migrations cellulaires au cours de l’ontogenèse. Bull Biol Fr Belg. 1969;103:435–52.

    PubMed  Google Scholar 

  31. Alvarez-Otero R, Sotelo C, Alvarado-Mallart RM. Chick/quail chimeras with partial cerebellar grafts: an analysis of the origin and migration of cerebellar cells. J Comp Neurol. 1993;333:597–615.

    Article  CAS  PubMed  Google Scholar 

  32. Lance-Jones CC, Lagernaur CF. A new marker for identifying quail cells in embryonic avian chimeras: a quail specific antiserum. J Histochem Cytochem. 1987;135:771–80.

    Article  Google Scholar 

  33. Napieralski JA, Eisenman LM. Developmental analysis of the external granular layer in the meander tail mutant mouse: do cerebellar microneurons have independent progenitors. Dev Dyn. 1993;197:244–54.

    Article  CAS  PubMed  Google Scholar 

  34. Ross ME, Fletcher C, Mason CA, Hatten ME, Heintz N. Meander tail reveals a discrete development unit in the mouse cerebellum. Proc Natl Acad Sci U S A. 1990;87:4189–92.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Gao WQ, Hatten ME. Immortalizing oncogenes subvert the establishment of granule cell identity in developing cerebellum. Development. 1994;120:1059–70.

    CAS  PubMed  Google Scholar 

  36. Zhang L, Goldman JE. Developmental fates and migratory pathways of dividing progenitors in the postnatal rat cerebellum. J Comp Neurol. 1996;370:536–50.

    Article  CAS  PubMed  Google Scholar 

  37. Zhang L, Goldman JE. Generation of cerebellar interneurons from dividing progenitors in white matter. Neuron. 1996;16:47–54.

    Article  PubMed  Google Scholar 

  38. Luskin MB. Restricted proliferation and migration of postnatally generated neurons derived from the forebrain subventricular zone. Neuron. 1993;11:173–89.

    Article  CAS  PubMed  Google Scholar 

  39. Jankovski A, Sotelo C. Subventricular zone—Olfactory bulb migratory pathway in the adult mouse: cellular composition and specificity as determined by heterochronic and heterotopic transplantation. J Comp Neurol. 1996;371:376–96.

    Article  CAS  PubMed  Google Scholar 

  40. Maricich SM, Herrup K. Pax-2 expression defines a subset of GABAergic interneurons and their precursors in the developing murine cerebellum. J Neurobiol. 1999;41:281–94.

    Article  CAS  PubMed  Google Scholar 

  41. Cameron DB, Kasai K, Jiang Y, Hu T, Saeki Y, Komuro H. Four distinct phases of basket/stellate cell migration after entering their final destination (the molecular layer) in the developing cerebellum. Dev Biol. 2009;332:309–24.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Simat M, Ambrosetti L, Lardi-Studler B, Fritschy JM. GABAergic synaptogenesis marks the onset of differentiation of basket and stellate cells in mouse cerebellum. Eur J Neurosci. 2007;26:2239–56.

    Article  PubMed  Google Scholar 

  43. Sotelo C. Development of "pinceaux" formations and dendritic translocation of climbing fibers during the acquisition of the balance between glutamatergic and gamma-aminobutyric acidergic inputs in developing Purkinje cells. J Comp Neurol. 2008;506:240–62.

    Article  CAS  PubMed  Google Scholar 

  44. Erdélyi F, Sekerkova G, Katarova Z, Hájos N, Pálhalmi J, Freund TF, et al. GAD65-GFP transgenic mice expressing GFP in the GABAergic nervous system. FENS Abstr. 2002;1:AO11–3.

    Google Scholar 

  45. Mecklenburg N, Garcia-Lopez R, Puelles E, Sotelo C, Martinez S. Cerebellar oligodendroglial cells have a mesencephalic origin. Glia. 2011;59:1946–57.

    Article  PubMed  Google Scholar 

  46. Grimaldi P, Parras C, Guillemot F, Rossi F, Wassef M. Origins and control of the differentiation of inhibitory interneurons and glia in the cerebellum. Dev Biol. 2009;328:422–33.

    Article  CAS  PubMed  Google Scholar 

  47. Kita Y, Kawakami K, Takahashi Y, Murakami F. Development of cerebellar neurons and glias revealed by in utero electroporation: Golgi-like labeling of cerebellar neurons and glias. PLoS ONE. 2013;8(7):e70091. doi:10.1371/journal.pone.0070091.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Ben-Arie N, Bellen HJ, Armstrong DL, McCall AE, Gordadze PR, Guo Q, et al. Math1 is essential for genesis of cerebellar granule neurons. Nature. 1997;390:69–172.

    Google Scholar 

  49. MacHold R, Fishell G. Math1 is expressed in temporally discrete pools of cerebellar rhombic-lip neural progenitors. Neuron. 2005;48:17–24.

    Article  CAS  PubMed  Google Scholar 

  50. Wang VY, Rose MF, Zoghbi HY. Math1 expression redefines the rhombic lip derivatives and reveals novel lineages within the brainstem and cerebellum. Neuron. 2005;48:31–43.

    Article  CAS  PubMed  Google Scholar 

  51. Fink AJ, Englund C, Daza RA, Pham D, Lau C, Nivison M, et al. Development of the deep cerebellar nuclei: Transcription factors and cell migration from the rhombic lip. J Neurosci. 2006;26(11):3066–76.

    Article  CAS  PubMed  Google Scholar 

  52. Hoshino M, Nakamura S, Mori K, Kawauchi T, Terao M, Nishimura YV, et al. Ptf1a, a bHLH transcriptional gene, defines GABAergic neuronal fates in cerebellum. Neuron. 2005;47:201–13.

    Article  CAS  PubMed  Google Scholar 

  53. Wechsler-Reya RJ, Scott MP. Control of neuronal precursor proliferation in the cerebellum by Sonic hedgehog. Neuron. 1999;22:103–14.

    Article  CAS  PubMed  Google Scholar 

  54. Sudarov A, Turnbull RK, Kim EJ, Lebel-potter M, Guillemot F, Joyner AL. Ascl1 genetics reveals insights into cerebellum local circuit assembly. J Neurosci. 2011;31:11055–69.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Huang X, Liu J, Ketova T, Fleming JT, Grover VK, Cooper MK, et al. Transventricular delivery of Sonic hedgehog is essential to cerebellar ventricular zone development. Proc Natl Acad Sci U S A. 2010;107:8422–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. Fleming JT, He W, Hao C, Ketova T, Pan FC, Wright CCV, et al. The Purkinje neuron acts as a central regulator of spatially and functionally distinct cerebellar precursors. Dev Cell. 2013;27:278–92.

    Article  CAS  PubMed  Google Scholar 

  57. Chizhikov VV, Lindgren AG, Currle DS, Rose MF, Monuki ES, Millen KJ. The roof plate regulates cerebellar cell-type specification and proliferation. Development. 2006;133:2793–804.

    Article  CAS  PubMed  Google Scholar 

  58. Minaki Y, Nakatani T, Mizuhara E, Inoue T, Ono Y. Identification of a novel transcriptional corepressor, Corl2, as a cerebellar Purkinje cell-selective marker. Gene Expr Patterns. 2008;8:418–23.

    Article  CAS  PubMed  Google Scholar 

  59. Leto K, Rolando C, Rossi F. The genesis of cerebellar GABAergic neurons: fate potential and specification mechanisms. Front Neuroanat. 2012. doi:10.3389/fnana.2012.00006.

    PubMed Central  PubMed  Google Scholar 

  60. Jankovski A, Rossi F, Sotelo C. Neuronal precursors in the postnatal mouse cerebellum are fully committed cells: Evidence from heterochronic transplantations. Eur J Neurosci. 1996;8:2308–19.

    Article  CAS  PubMed  Google Scholar 

  61. Hatten ME, Heintz N. Mechanisms of neural patterning and specification in the developing cerebellum. Annu Rev Neurosci. 1995;18:385–408.

    Article  CAS  PubMed  Google Scholar 

  62. Yang XW, Zhong R, Heintz N. Granule cell specification in the developing mouse brain as defined by expression of the zinc finger transcription factor RU49. Development. 1996;122:555–66.

    CAS  PubMed  Google Scholar 

  63. McConnell SK, Kaznowski CE. Cell cycle dependence of laminar determination in developing neocortex. Science. 1991;254:282–5.

    Article  CAS  PubMed  Google Scholar 

  64. Cohen-Tannoudji M, Morello D, Babinet C. Unexpected position-dependent expression of H-2 and β2-microglobulin/lacZ transgenes. Mol Reprod Dev. 1992;33:149–59.

    Article  CAS  PubMed  Google Scholar 

  65. Oberdick J, Schilling C, Smeyne RJ, Corbin JG, Bocchiaro C, Morgan JI. Control of segment-like patterns of gene expression in the mouse cerebellum. Neuron. 1993;10:1007–18.

    Article  CAS  PubMed  Google Scholar 

  66. Forss-Petter S, Danielson PE, Catsicas S, Battenberg E, Price J, Nerenberg M, et al. Transgenic mice expressing βgalactosidase in mature neurons under neuron-specific enolase promoter control. Neuron. 1990;5:187–97.

    Article  CAS  PubMed  Google Scholar 

  67. Carletti B, Grimaldi P, Magrassi L, Rossi F. Specification of cerebellar progenitors after heterotopic-heterochronic transplantation to the embryonic CNS in vivo and in vitro. J Neurosci. 2002;22:7132–46.

    CAS  PubMed  Google Scholar 

  68. Leto K, Carletti B, Williams IM, Magrassi L, Rossi F. Different types of cerebellar GABAergic interneurons originate from a common pool of multipotent progenitor cells. J Neurosci. 2006;26:11682–94.

    Article  CAS  PubMed  Google Scholar 

  69. Rolando C, Gribaudo S, Yoshikawa K, Leto K, De Marchis S, Rossi F. Extracerebellar progenitors grafted to the neurogenic milieu of the postnatal cerebellum adapt to the host environment but fail to acquire cerebellar identities. Eur J Neurosci. 2010;31:1340–51.

    Article  PubMed  Google Scholar 

  70. Leto K, Bartolini A, Yanagawa Y, Obata K, Magrassi L, Schilling K, et al. Laminar fate and phenotype specification of cerebellar GABAergic interneurons. J Neurosci. 2009;27:7079–91.

    Article  CAS  Google Scholar 

  71. Celio MR, Haizmann CW. Calcium-binding protein parvalbumin as a neuronal marker. Nature. 1981;293:300–2.

    Article  CAS  PubMed  Google Scholar 

  72. Milosevic A, Noctor SC, Martinez-Cerdeno V, Kriegstein AR, Goldman JE. Progenitors from the postnatal forebrain subventricular zone differentiate into cerebellar-like interneurons and cerebellar-specific astrocytes upon transplantation. Mol Cell Neurosci. 2008;39:324–34.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  73. Eccles JC, Llinas R, Sasaki K. The excitatory synaptic action of climbing fibers on Purkinje cells of the cerebellum. J Physiol. 1966;182:268–96.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  74. Palay SL, Chan-Palay V. Cerebellar Cortex Cytology and Organization. Berlin: Springer; 1974.

    Book  Google Scholar 

  75. Yan XX, Ribak CE. Developmental expression of gamma-aminobutyric acid transporters (GAT-1 and GAT-3) in the rat cerebellum: evidence for a transient presence of GAT-1 in Purkinje cells. Brain Res. 1998;111:253–69.

    Article  CAS  Google Scholar 

  76. Rosina A, Morara S, Provini L. GAT-1 developmental expression in the rat cerebellar cortex: Basket and pinceau formation. Neuroreport. 1999;10:1613–8.

    Article  CAS  PubMed  Google Scholar 

  77. Ango F, di Cristo G, Higashiyama H, Vann Bennett P, Wu P, Huang ZJ. Ankyrin-based subcellular gradient of neurofascin, an immunoglobulin family protein, directs GABAergic innervation at Purkinje axon initial segment. Cell. 2004;119:257–72.

    Article  CAS  PubMed  Google Scholar 

  78. Takayama C, Inoue Y. Developmental expression of GABA transporter-1 and 3 during formation of the GABAergic synapses in the mouse cerebellar cortex. Dev Brain Res. 2005;158:41–9.

    Article  CAS  Google Scholar 

  79. Chedotal A, Sotelo C. The “creeper stage” in cerebellar climbing fiber synaptogenesis precedes the “pericellular nest”. Ultrastructural evidence with parvalbumin immunocytochemistry. Dev Brain Res. 1993;76:207–20.

    Article  CAS  Google Scholar 

  80. Morara S, van der Want JJL, de Weerd H, Provini L, Rosina A. Ultra-structural analysis of climbing fiber-Purkinje cell synaptogenesis in the rat cerebellum. Neuroscience. 2001;108:655–71.

    Article  CAS  PubMed  Google Scholar 

  81. West MJ, del Cerro M. Early formation of synapses in the molecular layer of the fetal rat cerebellum. J Comp Neurol. 1976;165:137–53.

    Article  CAS  PubMed  Google Scholar 

  82. Ben-Ari Y. Excitatory actions of GABA during development: the nature of the nurture. Nat Rev Neurosci. 2002;3:728–39.

    Article  CAS  PubMed  Google Scholar 

  83. Eilers J, Plant TD, Marandi N, Konnerth A. GABA-mediated Ca2+ signaling in developing rat cerebellar Purkinje cells. J Physiol. 2001;536:429–37.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  84. Rivera C, Voipio J, Payne JA, Ruusuvuori E, Lahtinen H, Lamsa K, et al. The K+/Cl- co-transporter KCC2 renders GABA hyperpolarizing during neuronal maturation. Nature. 1999;397:251–5.

    Article  CAS  PubMed  Google Scholar 

  85. Marty S, Wehrlé R, Alvarez-Leefmans FJ, Gasnier B, Sotelo C. Postnatal maturation of Na+, K+, 2Bl- cotransporter expression in inhibitory synaptogenesis in the rat hippocampus: an immunocytochemical analysis. Eur J Neurosci. 2002;15:233–45.

    Article  PubMed  Google Scholar 

  86. Yamada J, Okabe A, Toyoda H, Kilb W, Luhmann HJ, Fukuda A. Cl- uptake promoting depolarizing GABA actions in immature rat neocortical neurons is mediated by NKCC1. J Physiol. 2004;557:829–41.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  87. Lee H, Chen CX, Liu YJ, Aizenman E, Kandler K. KCC2 expression in immature rat cortical neurons is sufficient to switch the polarity of GABA responses. Eur J Neurosci. 2005;21:2593–9.

    Article  PubMed Central  PubMed  Google Scholar 

  88. Gobel S. Axo-axonic septate junctions in the basket formation of the cat cerebellar cortex. J Cell Biol. 1971;51:328–33.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  89. Sotelo C, Llinás R. Specialized membrane junctions between neurons in the vertebrate cerebellar cortex. J Cell Biol. 1972;53:271–89.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  90. Bourrat F, Sotelo C. Postnatal development of the inferior olivary complex in the rat. I. An electron microscopic study of the medial accessory olive. Brain Res. 1983;284(2–3):291–310.

    Article  CAS  PubMed  Google Scholar 

  91. Gotow T, Sotelo C. Postnatal development of the inferior olivary complex in the rat: IV. Synaptogenesis of GABAergic afferents, analyzed by glutamic acid decarboxylase immunocytochemistry. J Comp Neurol. 1987;263:526–52.

    Article  CAS  PubMed  Google Scholar 

  92. Buttermore ED, Piochon C, Wallace ML, Philpot BD, Hansel C, Bhat MA. Pinceau organization in the cerebellum requires distinct functions of neurofascin in Purkinje and basket neurons during postnatal development. J Neurosci. 2012;32:4724–42.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  93. Ango F, Wu C, van der Want JJ, Wu P, Schachner M, Huang ZJ. Bergmann glia and the recognition molecule CHL1 organize GABAergic axons and direct innervation of Purkinje cell dendrites. PLoS Biol. 2008. doi:10.1371/journal.pbio.0060103.

    PubMed Central  PubMed  Google Scholar 

  94. Cioni JM, Telley L, Saywell V, Cadilhac C, Jourdan C, Huber AB, et al. SEMA3A signaling controls layer-specific interneuron branching in the cerebellum. Curr Biol. 2013;23:850–61.

    Article  CAS  PubMed  Google Scholar 

  95. Chan-Palay V, Palay SL. Interrelations of basket cell axons and climbing fibers in the cerebellar cortex of the rat. Z Anat Entwickl-Gesch. 1970;132:191–227.

    Article  CAS  Google Scholar 

  96. Llinás R, Sugimori M. Calcium conductances in Purkine cell dendrites: their role in development and integration. Prog Brain Res. 1979;51:323–34.

    Article  PubMed  Google Scholar 

  97. Viltono L, Patrizi A, Fritschy JM, Sassoè-Pognetto M. Synaptogenesis in the cerebellar cortex: differential regulation of gephyrin and GABA-A receptors at somatic and dendritic synapses of Purkinje cells. J Comp Neurol. 2008;508:579–91.

    Article  PubMed  Google Scholar 

  98. Larramendi LMH. Analysis of synaptogenesis in the cerebellum of the mouse. In: Llinás R, editor. Neurobiology of Cerebellar Evolution and Development. Chicago: AMA-ERF Institute for Biomedical Research; 1969. p. 803–43.

    Google Scholar 

  99. Cajal SR. Nouvelles Idées sur la Structure du Système Nerveux chez l’Homme et chez les Vertébrés. Paris: C Reinwald & Cie; 1894.

    Book  Google Scholar 

  100. Eccles JC, Llinas R, Sasaki K. Parallel fibre stimulation and the responses induced thereby in the Purkinje cells of the cerebellum. Exp Brain Res. 1966;1:17–39.

    CAS  PubMed  Google Scholar 

  101. Eccles JC, Llinas R, Sasaki K. The mossy fibre-granule cell relay of the cerebellum and its inhibitory control by Golgi cells. Exp Brain Res. 1966;1:82–101.

    CAS  PubMed  Google Scholar 

  102. Sotelo C, Camillo G, Cajal SR. The anatomical organization of the cortex of the cerebellum. Can the neuron doctrine still support our actual knowledge on the cerebellar structural arrangement? Brain Res Rev. 2011;66:16–34.

    Article  CAS  PubMed  Google Scholar 

  103. Fuxe K. Evidence for the existence of monoamine containing neurons in the central nervous system. IV. Distribution of monoamine nerve terminals in the central nervous system. Acta Physiol Scand. 1965;247 Suppl 64:7–85.

    Google Scholar 

  104. Hökfelt T, Fuxe K. Cerebellar monoamine nerve terminals, a new type of afferent fibers to the cortex cerebelli. Exp Brain Res. 1969;9:63–72.

    Article  PubMed  Google Scholar 

  105. Mugnaini E, Dahl AL. Mode of distribution of aminergic fibers in the cerebellar cortex of the chicken. J Comp Neurol. 1975;162:417–32.

    Article  CAS  PubMed  Google Scholar 

  106. Beaudet A, Sotelo C. Synaptic remodeling of serotonin axon terminals in rat agranular cerebellum. Brain Res. 1981;206:305–29.

    Article  CAS  PubMed  Google Scholar 

  107. Abbott LC, Sotelo C. Ultrastructural analysis of catecholaminergic innervation in weaver and normal mouse cerebellar cortices. J Comp Neurol. 2000;426:316–29.

    Article  CAS  PubMed  Google Scholar 

  108. Lugaro E. Sulle connessioni tra gli elementi nervosi della corteccia cerebellare con considerazioni generali sul significato fisiologico dei rapporti tra gli elementi nervosi. Riv Sper Freniatr Med Leg. 1894;20:297–331.

    Google Scholar 

  109. Middleton FA, Strick PL. Anatomical evidence for cerebellar and basal ganglia involvement in higher cognitive functions. Science. 1994;266:458–61.

    Article  CAS  PubMed  Google Scholar 

  110. Schmahmann JD. The role of the cerebellum in cognition and emotion: Personal reflections since 1982 on the dysmetria of thought hypothesis, and its historical evolution from theory to therapy. Neuropsychol Rev. 2010;20:236–60.

    Article  PubMed  Google Scholar 

  111. Sotelo C. Viewing the cerebellum through the eyes of Ramon y Cajal. Cerebellum. 2008;7:517–22.

    Article  PubMed  Google Scholar 

  112. Larramendi LMH, Lemkey-Johnston N. The distribution of recurrent Purkinje collateral synapses in the mouse cerebellar cortex. J Comp Neurol. 1970;138:451–82.

    Article  CAS  PubMed  Google Scholar 

  113. Lemkey-Johnston N, Larramendi MLH. Types and distribution of synapses upon basket and stellate cells of the mouse cerebellum: an electron microscopic study. J Comp Neurol. 1968;134:73–112.

    Article  CAS  PubMed  Google Scholar 

  114. Lainé J, Axelrad H. Lugaro cells target basket and stellate cells in the cerebellar cortex. Neuroreport. 1998;9:2399–403.

    Article  PubMed  Google Scholar 

  115. Lainé J, Axelrad H. Extending the cerebellar Lugaro cell class. Neurosci. 2002;115:363–74.

    Article  Google Scholar 

  116. Yamazaki M, Araki K, Shibata A, Mishina M. Molecular cloning of a cDNA encoding a novel member of the mouse glutamate receptor channel family. Biochem Biophys Res Commun. 1992;183:886–92.

    Article  CAS  PubMed  Google Scholar 

  117. Konno K, Matsuda K, Nakamoto C, Uchigashima M, Miyazaki T, Yamasaki M, et al. Enriched expression of GluD1 in higher brain regions and its involvement in parallel fiber-interneuron synapse formation in the cerebellum. J Neurosci. 2014;34:7412–24.

    Article  CAS  PubMed  Google Scholar 

  118. Kashiwabuchi N, Ikeda K, Araki K, Hirano T, Shibuki K, Takayama C, et al. Impairment of motor coordination Purkinje cell synapse formation and cerebellar long-term depression in GluRδ2 mutant mice. Cell. 1995;81:245–52.

    Article  CAS  PubMed  Google Scholar 

  119. Lalouette A, Lohof A, Sotelo C, Guénet J, Mariani J. Neurobiological effects of a null mutation depend on genetic context: comparison between two hotfoot alleles of the delta-2 ionotropic glutamate receptor. Neuroscience. 2001;105:443–55.

    Article  CAS  PubMed  Google Scholar 

  120. Kaiserman-Abramof IR, Palay SL. Fine structural studies of the cerebellar cortex in a mormyrid fish. In: Llinás R, editor. Neurobiology of cerebellar evolution and development. Chicago: AMA-ERF Institute for Biomedical Research; 1969. p. 171–205.

    Google Scholar 

  121. Dumoulin A, Triller A, Dieudonné S. IPSC kinetics at identified GABAergic and mixed GABAergic and glycinergic synapses onto cerebellar Golgi cells. J Neurosci. 2001;21:6045–57.

    CAS  PubMed  Google Scholar 

  122. Geurts FJ, De Schutter E, Dieudonné S. Unraveling the cerebellar cortex: cytology and cellular physiology of large-sized interneurons in the granular layer. Cerebellum. 2003;2:290–9.

    Article  PubMed  Google Scholar 

  123. Dugué GP, Brunel N, Hakim V, Schwartz E, Chat M, Lévesque M, et al. Electrical coupling mediates tunable low-frequency oscillations and resonance in the cerebellar Golgi cell network. Neuron. 2009;61:126–39.

    Article  PubMed  CAS  Google Scholar 

  124. D’Angelo E, de Zeeuw CI. Timing and plasticity in the cerebellum: focus on the granular layer. Trends Neurosci. 2009;32:30–9.

    Article  PubMed  CAS  Google Scholar 

  125. Hull C, Regehr WG. Identification of an inhibitory circuit that regulates cerebellar Golgi cell activity. Neuron. 2012;73:149–58.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  126. Dieudonné S, Dumoulin A. Serotonin-driven long-range inhibitory connections in the cerebellar cortex. J Neurosci. 2000;20:1837–48.

    PubMed  Google Scholar 

  127. Palay SL. The structural basis for neural action. In: Brazier MAB, editor. Brain function. Vol. II RNA and brain function; memory and learning, UCLA Forum of medical sciences. Los Angeles: University of California Press; 1964. p. 69–108.

    Google Scholar 

  128. Palay SL, Sotelo C, Peters A, Orkand PM. The axon hillock and the initial segment. J Cell Biol. 1968;38:193–201.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  129. Somogyi P, Hámori J. A quantitative electron microscopic study of the Purkinje cell axon initial segment. Neuroscience. 1976;1:361–5.

    Article  CAS  PubMed  Google Scholar 

  130. Iwakura A, Uchigashima M, Miyazaki T, Yamasaki M, Watanabe M. Lack of molecular-anatomical evidence for GABAergic influence on axon initial segment of cerebellar Purkinje cells by the pinceau formation. J Neurosci. 2012;32:9438–48.

    Article  CAS  PubMed  Google Scholar 

  131. Laube G, Roper J, Pitt JC, Sewing S, Kistner DU, Garner CC, et al. Ultrastructural localization of Shaker-related potassium channel subunits and synapse-associated protein 90 to septate-like junctions in rat cerebellar pinceaux. Mol Brain Res. 1996;42:51–61.

    Article  CAS  PubMed  Google Scholar 

  132. Bobik M, Ellisman MH, Rudy B, Martone ME. Potassium channel subunit Kv3.2 and the water channel aquaporin-4 are selectively localized to cerebellar pinceau. Brain Res. 2004;1026:168–78.

    Article  CAS  PubMed  Google Scholar 

  133. Furukawa T, Furshpan EJ. Two inhibitory mechanisms in the Mauthner neurons of goldfish. J Neurophysiol. 1963;26:140–76.

    CAS  PubMed  Google Scholar 

  134. Triller A, Korn H. Glio-axonic junctional like complexes at the Mauthner cell’s axon cap of teleosts: a possible morphological basis for field effect inhibitions. Neurosci Lett. 1980;18:275–81.

    Article  CAS  PubMed  Google Scholar 

  135. Korn H, Axelrad H. Electrical inhibition of Purkinje cells in the cerebellum of the rat. Proc Natl Acad Sci U S A. 1980;77:6244–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  136. Blot A, Barbour B. Analysis of the study of the cerebellar pinceau by Korn and Axelrad. Preprint at: http://biorxiv.org/content/early/2013/12/03/001123.

  137. Blot A, Barbour B. Ultra-rapid axon-axon ephatic inhibition of cerebellar Purkinje cells by the pinceau. Nat Neurosci. 2014;17:289–95.

    Article  CAS  PubMed  Google Scholar 

  138. Baker R, Llinas R. Electrotonic coupling between neurones in the rat mesencephalic nucleus. J Physiol. 1971;212:45–63.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  139. Sotelo C, Korn H. Morphological correlates of electrical and other interactions through low-resistance pathways between neurons of the vertebrate central nervous system. In: Bourne GH, Danielli JF, Jeon KW, editors. International review of cytology, vol. 55. London: Academic; 1978. p. 67–107.

    Google Scholar 

  140. Revel JP, Karnovsky MJ. Hexagonal arrays of subunits in intercellular junctions of the mouse heart and liver. J Cell Biol. 1967;33:C7–12.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  141. Bennett MVL. Physiology of electrotonic junctions. Ann N Y Acad Sci. 1966;137:509–39.

    Article  CAS  PubMed  Google Scholar 

  142. Loewenstein WR. Permeability of membrane junctions. Ann N Y Acad Sci. 1966;137:441–72.

    Article  CAS  PubMed  Google Scholar 

  143. Gilula NB, Reeves OR, Steinbach A. Metabolic coupling, ionic coupling and cell contacts. Nature. 1972;235:262–5.

    Article  CAS  PubMed  Google Scholar 

  144. Pitts JD, Simms JW. Permeability of junctions between animal cells: Intercellular transfer of nucleotides but not macromolecules. Exp Cell Res. 1977;104:153–63.

    Article  CAS  PubMed  Google Scholar 

  145. Simpson I, Rose B, Loewenstein WR. Size limit of molecules permeating the junctional membrane channels. Science. 1977;195:294–6.

    Article  CAS  PubMed  Google Scholar 

  146. Goodenough DA, Dick 2nd JS, Lyons JE. Lens metabolic cooperation: a study of mouse lens transport and permeability visualized with freeze-substitution autoradiography and electron microscopy. J Cell Biol. 1980;86:576–89.

    Article  CAS  PubMed  Google Scholar 

  147. Söhl G, Maxeiner S, Willecke K. Expression and function of neuronal gap junctions. Nat Rev Neurosci. 2005;6:191–200.

    Article  PubMed  CAS  Google Scholar 

  148. Sotelo C, Triller A. Fate of presynaptic afferents to Purkinje cells in the adult "nervous" mutant mouse. A model to study presynaptic stabilization. Brain Res. 1979;175:11–36.

    Article  CAS  PubMed  Google Scholar 

  149. Belluardo N, Mudò G, Trovato-Salinaro A, Le Gurun S, Charollais A, Serre-Beinier V, et al. Expression of connexin 36 in the adult and developing rat brain. Brain Res. 2000;865:121–38.

    Article  CAS  PubMed  Google Scholar 

  150. Van Der Giessen RS, Koekkoek SK, van Dorp S, De Gruijl JR, Cupido A, Khosrovani S, et al. Role of olivary electrical coupling in cerebellar motor learning. Neuron. 2008;58:599–612.

    Article  CAS  Google Scholar 

  151. Alcami P, Marty A. Estimating functional connectivity in an electrically coupled interneuron network. Proc Natl Acad Sci U S A. 2013;110:E4798–807.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  152. Rela L, Szczupak L. Gap junctions: their importance for the dynamics of neural circuits. Mol Neurobiol. 2004;30:341–57.

    Article  CAS  PubMed  Google Scholar 

  153. Kim J, Lee S, Tsuda S, Zhang X, Asrican B, Gloss B, et al. Optogenetic mapping of cerebellar inhibitory circuitry reveals spatially biased coordination of interneurons via electrical synapses. Cell Rep. 2014;7:1601–13.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Grant BFU2013-48230 from Ministerio de Economía y Competitividad. Spain.

Conflict of Interest

I, Constantino Sotelo, hereby certify that I have neither financial nor personal relationships that might bias this work (e.g., consultancies, stock ownership, equity interests, and patent-licensing arrangements).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Constantino Sotelo.

Additional information

Manuscript for a special issue in honor of Prof. Enrico Mugnaini, Editors: Chris de Zeeuw and Marco Martina.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sotelo, C. Molecular Layer Interneurons of the Cerebellum: Developmental and Morphological Aspects. Cerebellum 14, 534–556 (2015). https://doi.org/10.1007/s12311-015-0648-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12311-015-0648-x

Keywords

Navigation