Skip to main content
Log in

On the Induction of Postsynaptic Granule Cell–Purkinje Neuron LTP and LTD

  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

In the last decade, several experimental studies have demonstrated that particular patterns of synaptic activity can induce postsynaptic parallel fiber (PF) long-term potentiation (LTP). This form of plasticity can reverse postsynaptic PF long-term depression (LTD), which has been traditionally considered as the principal form of plasticity underlying cerebellar learning. Postsynaptic PF-LTP requires a transient increase in intracellular Ca2+ concentration and, in contrast to PF-LTD, is induced without concomitant climbing fiber (CF) activation. Thus, it has been postulated that the polarity of long-term synaptic plasticity is determined by the amplitude of the Ca2+ transient during the induction protocol, with PF-LTP induced by smaller Ca2+ signals without concomitant CF activation. However, this hypothesis is contradicted by recent studies. A quantitative analysis of Ca2+ signals associated with induction of PF-LTP indicates that the bidirectional induction of long-term plasticity is regulated by more complex mechanisms. Here we review the state-of-the-art of research on postsynaptic PF-LTP and PF-LTD and discuss the principal open questions on this topic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Marr D. A theory of cerebellar cortex. J Physiol (Lond). 1969;202:437–70.

    CAS  Google Scholar 

  2. Albus JS. A theory of cerebellar function. Math Biosci. 1971;28:167–71.

    Google Scholar 

  3. Ito M, Sakurai M, Tongroach P. Climbing fiber induced depression of both mossy fiber responsiveness and glutamate sensitivity of cerebellar Purkinje cells. J Physiol (Lond). 1982;324:113–34.

    CAS  Google Scholar 

  4. Karachot L, Kado RT, Ito M. Stimulus parameters for induction of long-term depression in in vitro rat Purkinje cells. Neurosci Res. 1995;21:161–8.

    Article  Google Scholar 

  5. Konnerth A, Dreessen J, Augustine GJ. Brief dendritic calcium signals initiate long-lasting synaptic depression in cerebellar Purkinje cells. Proc Natl Acad Sci USA. 1992;89:7051–5.

    Article  CAS  PubMed  Google Scholar 

  6. Aiba A, Kano M, Chen C, Stanton ME, Fox GD, Herrup K, et al. Deficient cerebellar long-term depression and impaired motor learning in mGluR1 mutant mice. Cell. 1994;79:377–88.

    Article  CAS  PubMed  Google Scholar 

  7. Conquet F, Bashir ZI, Davies CH, Daniel H, Ferraguti F, Bordi F, et al. Motor deficit and impairment of synaptic plasticity in mice lacking mGluR1. Nature. 1994;372:237–43.

    Article  CAS  PubMed  Google Scholar 

  8. Hartell NA. Induction of cerebellar long-term depression requires activation of glutamate metabotropic receptors. NeuroReport. 1994;5:913–6.

    Article  CAS  PubMed  Google Scholar 

  9. Hemart N, Daniel H, Jaillard D, Crepel F. Properties of glutamate receptors are modified during long-term depression in rat cerebellar Purkinje cells. Neuroscience. 1994;19:213–21.

    Article  CAS  Google Scholar 

  10. Matsuda S, Launey T, Mikawa S, Hirai H. Disruption of AMPA receptor GluR2 clusters following long-term depression induction in cerebellar Purkinje neurons. EMBO J. 2000;19:2765–74.

    Article  CAS  PubMed  Google Scholar 

  11. Lev-Ram V, Wong ST, Storm DR, Tsien RY. A new form of cerebellar long-term potentiation is postsynaptic and depends on nitric oxide but not cAMP. Proc Natl Acad Sci USA. 2002;99:8389–93.

    Article  CAS  PubMed  Google Scholar 

  12. Coesmans M, Weber JT, De Zeeuw CI, Hansel C. Bidirectional parallel fiber plasticity in the cerebellum under climbing fiber control. Neuron. 2004;18:691–700.

    Article  Google Scholar 

  13. Jörntell H, Hansel C. Synaptic memories upside down: bidirectional plasticity at cerebellar parallel fiber–Purkinje cell synapses. Neuron. 2006;52:227–38.

    Article  PubMed  Google Scholar 

  14. Bienenstock EL, Cooper LN, Munro PW (1982) Theory for the development of neuron selectivity: orientation specificity and binocular interaction in visual cortex. J Neurosci 32–48.

  15. Canepari M, Vogt KE. Dendritic spike saturation of endogenous calcium buffer and induction of postsynaptic cerebellar LTP. PLoS ONE. 2008;3:e4011.

    Article  PubMed  Google Scholar 

  16. Ellis-Davies GC, Kawato M, Augustine GJ. Ca2+ requirements for cerebellar long-term synaptic depression: role for a postsynaptic leaky integrator. Neuron. 2007;54:787–800.

    Article  PubMed  Google Scholar 

  17. Ito M. Cerebellar long-term depression: characterization, signal transduction, and functional roles. Physiol Rev. 2001;81:1143–95.

    CAS  PubMed  Google Scholar 

  18. Hartell NA. Parallel fiber plasticity. Cerebellum. 2002;1:3–18.

    Article  CAS  PubMed  Google Scholar 

  19. Hartell NA. Strong activation of parallel fibers produces localized calcium transients and a form of LTD that spreads to distant synapses. Neuron. 1996;16:601–10.

    Article  CAS  PubMed  Google Scholar 

  20. Wang SS, Denk W, Häusser M. Coincidence detection in single dendritic spines mediated by calcium release. Nat Neurosci. 2000;3:1266–73.

    Article  CAS  PubMed  Google Scholar 

  21. Brenowitz SD, Regehr WG. Associative short-term synaptic plasticity mediated by endocannabinoids. Neuron. 2005;45:419–31.

    Article  CAS  PubMed  Google Scholar 

  22. Safo PK, Regehr WG. Endocannabinoids control the induction of cerebellar LTD. Neuron. 2006;48:647–59.

    Article  Google Scholar 

  23. Wang X, Chen G, Gao W, Ebner T. Long-term potentiation of the responses to parallel fiber stimulation in mouse cerebellar cortex in vivo. Neuroscience. 2009;162:713–22.

    Article  CAS  PubMed  Google Scholar 

  24. Kuruma A, Inoue T, Mikoshiba K. Dynamics of Ca2+ and Na+ in the dendrites of mouse cerebellar Purkinje cells evoked by parallel fibre stimulation. Eur J Neurosci. 2003;18:2677–89.

    Article  PubMed  Google Scholar 

  25. Renzi M, Farrant M, Cull-Candy SG. Climbing-fibre activation of NMDA receptors in Purkinje cells of adult mice. J Physiol. 2007;585:91–101.

    Article  CAS  PubMed  Google Scholar 

  26. Llinas R, Sugimori M. Electrophysiological properties of in vitro Purkinje cell dendrites in mammalian cerebellar slices. J Physiol (Lond). 1980;305:197–213.

    CAS  Google Scholar 

  27. Rancz EA, Häusser M. Dendritic calcium spikes are tunable triggers of cannabinoid release and short-term synaptic plasticity in cerebellar Purkinje neurons. J Neurosci. 2006;26:5428–37.

    Article  CAS  PubMed  Google Scholar 

  28. Schmidt H, Stiefel KM, Racay P, Schwaller B, Eilers J. Mutational analysis of dendritic Ca2+ kinetics in rodent Purkinje cells: role of parvalbumin and calbindin D28k. J Physiol. 2003;551:13–32.

    Article  CAS  PubMed  Google Scholar 

  29. Canepari M, Ogden D. Kinetic, pharmacological and activity-dependent separation of two Ca2+ signalling pathways mediated by type 1 metabotropic glutamate receptors in rat Purkinje neurones. J Physiol (Lond). 2006;573:65–82.

    Article  CAS  Google Scholar 

  30. Finch EA, Augustine GJ. Local calcium signalling by inositol-1, 4, 5-trisphosphate in Purkinje cell dendrites. Nature. 1998;396:753–6.

    Article  CAS  PubMed  Google Scholar 

  31. Takechi H, Eilers J, Konnerth A. A new class of synaptic response involving calcium release in dendritic spines. Nature. 1998;396:757–60.

    Article  CAS  PubMed  Google Scholar 

  32. Sarkisov DV, Wang SS. Order-dependent coincidence detection in cerebellar Purkinje neurons at the inositol trisphosphate receptor. J Neurosci. 2008;28:133–42.

    Article  CAS  PubMed  Google Scholar 

  33. Canepari M, Auger C, Ogden D. Ca2+ ion permeability and single-channel properties of the metabotropic slow EPSC of rat Purkinje neurons. J Neurosci. 2004;24:3563–73.

    Article  CAS  PubMed  Google Scholar 

  34. Hartmann J, Dragicevic E, Adelsberger H, Henning HA, Sumser M, Abramowitz J, et al. TRPC3 channels are required for synaptic transmission and motor coordination. Neuron. 2008;59:392–8.

    Article  CAS  PubMed  Google Scholar 

  35. Roche KW, Tingley WG, Huganir RL. Glutamate receptor phosphorylation and synaptic plasticity. Curr Opin Neurobiol. 1994;4:383–8.

    Article  CAS  PubMed  Google Scholar 

  36. Chung HJ, Xia J, Scannevin RH, Zhang X, Huganir RL. Phosphorylation of the AMPA receptor subunit GluR2 differentially regulates its interaction with PDZ domain-containing proteins. J Neurosci. 2000;20:7258–67.

    CAS  PubMed  Google Scholar 

  37. Tanaka K, Augustine GJ. A positive feedback signal transduction loop determines timing of cerebellar long-term depression. Neuron. 2008;59:608–20.

    Article  CAS  PubMed  Google Scholar 

  38. Okada D. Protein kinase C modulates calcium sensitivity of nitric oxide synthase in cerebellar slices. J Neurochem. 1995;64:1298–304.

    Article  CAS  PubMed  Google Scholar 

  39. Daniel H, Hemart N, Jaillard D, Crepel F. Long-term depression requires nitric oxide and guanosine 39, 59 cyclic monophosphate production in rat cerebellar Purkinje cells. Eur J Neurosci. 1993;5:1079–82.

    Article  CAS  PubMed  Google Scholar 

  40. Linden DJ, Connor JA. Participation of postsynaptic PKC in cerebellar long-term depression in culture. Science. 1991;254:1656–9.

    Article  CAS  PubMed  Google Scholar 

  41. Abellovich A, Chen C, Goda Y, Silva AJ, Stevens CF, Tonegawa S. Modified hippocampal long-term potentiation in PKC-mutant mice. Cell. 1993;75:1253–62.

    Article  Google Scholar 

  42. Belmeguenai A, Hansel C. A role for protein phosphatases 1, 2A, and 2B in cerebellar long-term potentiation. J Neurosci. 2005;25:10768–72.

    Article  CAS  PubMed  Google Scholar 

  43. Kakegawa W, Yuzaki M. A mechanism underlying AMPA receptor trafficking during cerebellar long-term potentiation. Proc Natl Acad Sci USA. 2005;102:17846–51.

    Article  CAS  PubMed  Google Scholar 

  44. Gundappa-Sulur G, De Schutter E, Bower JM. Ascending granule cell axon: an important component of cerebellar cortical circuitry. J Comp Neurol. 1999;408:580–96.

    Article  CAS  PubMed  Google Scholar 

  45. Sims RE, Hartell NA. Differences in transmission properties and susceptibility to long-term depression reveal functional specialization of ascending axon and parallel fiber synapses to Purkinje cells. J Neurosci. 2005;25:3246–57.

    Article  CAS  PubMed  Google Scholar 

  46. Sims RE, Hartell NA. Differential susceptibility to synaptic plasticity reveals a functional specialization of ascending axon and parallel fiber synapses to cerebellar Purkinje cells. J Neurosci. 2006;26:5153–9.

    Article  CAS  PubMed  Google Scholar 

  47. Marcaggi P, Attwell D. Endocannabinoid signaling depends on the spatial pattern of synapse activation. Nat Neurosci. 2005;8:776–81.

    Article  CAS  PubMed  Google Scholar 

  48. Marcaggi P, Attwell D. Short- and long-term depression of rat cerebellar parallel fibre synaptic transmission mediated by synaptic crosstalk. J Physiol. 2007;578:545–50.

    Article  CAS  PubMed  Google Scholar 

  49. Han VZ, Zhang Y, Bell CC, Hansel C. Synaptic plasticity and calcium signaling in Purkinje cells of the central cerebellar lobes of mormyrid fish. J Neurosci. 2007;27:13499–512.

    Article  CAS  PubMed  Google Scholar 

  50. Denk W, Yuste R, Svoboda K, Tank DW. Imaging calcium dynamics in dendritic spines. Curr Opin Neurobiol. 1996;6:372–8.

    Article  CAS  PubMed  Google Scholar 

  51. Sabatini BL, Maravall M, Svoboda K (2001) Ca(2+) signaling in dendritic spines. Curr Opin Neurobiol 349–356

  52. Fisher JA, Barchi JR, Welle CG, Kim GH, Kosterin P, Obaid AL, et al. Two-photon excitation of potentiometric probes enables optical recording of action potentials from mammalian nerve terminals in situ. J Neurophysiol. 2008;99:1545–53.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the University of Basel and by SNSF grant 3100A0_122000 (M.C.). We thank Prof. Josef Kapfhammer for valuable comments on the manuscript.

Conflict of interest

We declare that there are no conflicts of interest with this submission.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Canepari.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vogt, K.E., Canepari, M. On the Induction of Postsynaptic Granule Cell–Purkinje Neuron LTP and LTD. Cerebellum 9, 284–290 (2010). https://doi.org/10.1007/s12311-010-0174-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12311-010-0174-9

Keywords

Navigation