Skip to main content
Log in

Up–Down Asymmetry of Cerebellar Activation During Vertical Pursuit Eye Movements

  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

Animal experiments have demonstrated that the vast majority of vertical gaze-velocity Purkinje cells in the cerebellar floccular lobe, whose firing rate is modulated during vertical smooth pursuit eye movements, show a preference for downward pursuit. Here we validate the functional vertical asymmetry of the cerebellar flocculus in humans using functional magnetic resonance imaging by demonstrating a significantly higher activation of the floccular lobe for downward than for upward pursuit. The findings corroborate our recent hypothesis on the pathogenesis of cerebellar downbeat nystagmus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

References

  1. Krauzlis RJ (2004) Recasting the smooth pursuit eye movement system. J Neurophysiol 91:591–603

    Article  PubMed  Google Scholar 

  2. Stone LS, Lisberger SG (1990) Visual responses of Purkinje cells in the cerebellar flocculus during smooth-pursuit eye movements in monkeys. I. Simple spikes. J Neurophysiol 63:1241–1261

    PubMed  CAS  Google Scholar 

  3. Krauzlis RJ, Lisberger SG (1996) Directional organization of eye movement and visual signals in the floccular lobe of the monkey cerebellum. Exp Brain Res 109:289–302

    Article  PubMed  CAS  Google Scholar 

  4. Stephan T, Kalla R, Marti S, Straumann D, Glasauer S. Asymmetric cerebellar flocculus activation for vertical smooth pursuit eye movements. Presented at the 11th Annual Meeting for Human Brain Mapping (HBM); June 12–16, 2005; Toronto, Ontario, Canada

  5. Marti S, Bockisch CJ, Straumann D (2005) Prolonged asymmetric smooth pursuit stimulation leads to downbeat nystagmus in healthy human subjects. Invest Ophthalmol Vis Sci 46:143–149

    Article  PubMed  Google Scholar 

  6. Friston KJ, Ashburner J, Frith CD, Poline JP, Heather JD, Frackowiak RS (1995) Spatial registration and normalization of images. Hum Brain Mapp 2:165–189

    Article  Google Scholar 

  7. Stephan T, Marx E, Brückmann H, Brandt T, Dieterich M (2002) Lid closure mimics head movement in fMRI. NeuroImage 16:1156–1158

    Article  PubMed  Google Scholar 

  8. Friston KJ, Holmes AP, Worsley KJ, Poline JP, Frith CD, Frackowiak RS (1995) Statistical parametric maps in functional imaging: a general linear approach. Hum Brain Mapp 2:189–210

    Article  Google Scholar 

  9. Schmahmann JD, Doyon J, Toga AW, Petrides M, Evans AC (2000) MRI atlas of the human cerebellum. Academic, San Diego

    Google Scholar 

  10. Genovese CR, Lazar NA, Nichols T (2002) Thresholding of statistical maps in functional neuroimaging using the false discovery rate. Neuroimage 15:870–878

    Article  PubMed  Google Scholar 

  11. Schmid A, Rees G, Frith C, Barnes G (2001) An fMRI study of anticipation and learning of smooth pursuit eye movements in humans. NeuroReport 12:1409–1414

    Article  PubMed  CAS  Google Scholar 

  12. Lencer R, Nagel M, Sprenger A, Zapf S, Erdmann C, Heide W et al (2004) Cortical mechanisms of smooth pursuit eye movements with target blanking. An fMRI study. Eur J Neurosci 19:1430–1436

    Article  PubMed  Google Scholar 

  13. Noda H, Suzuki DA (1979) The role of the flocculus of the monkey in saccadic eye movements. J Physiol 294:317–334

    PubMed  CAS  Google Scholar 

  14. Leigh RJ, Zee DS (2006) The neurology of eye movements, 4th edn. Oxford University Press, New York

    Google Scholar 

  15. Logothetis NK, Wandell BA (2004) Interpreting the BOLD signal. Annu Rev Physiol 66:735–769

    Article  PubMed  CAS  Google Scholar 

  16. Kim JS, Sharpe JA (2001) The vertical vestibulo-ocular reflex, and its interaction with vision during active head motion: effects of aging. J Vestib Res 11:3–12

    PubMed  CAS  Google Scholar 

  17. Marti S, Straumann D, Glasauer S (2005) The origin of downbeat nystagmus: an asymmetry in the distribution of on-directions of vertical gaze-velocity Purkinje cells. Ann N Y Acad Sci 1039:548–553

    Article  PubMed  Google Scholar 

  18. Marti S, Straumann D, Büttner U, Glasauer S (2008) A model-based theory on the origin of downbeat nystagmus. Exp Brain Res 188:613–631

    Article  PubMed  Google Scholar 

  19. Pierrot-Deseilligny C, Milea D (2005) Vertical nystagmus: clinical facts and hypotheses. Brain 128:1237–1246

    Article  PubMed  CAS  Google Scholar 

  20. Wagner JN, Glaser M, Brandt T, Strupp M (2008) Downbeat nystagmus: aetiology and comorbidity in 117 patients. J Neurol Neurosurg Psychiatry 79:672–677

    Article  PubMed  CAS  Google Scholar 

  21. Halmagyi GM, Rudge P, Gresty MA, Sanders MD (1983) Downbeating nystagmus. A review of 62 cases. Arch Neurol 40:777–784

    PubMed  CAS  Google Scholar 

  22. Glasauer S, Hoshi M, Büttner U (2005) Smooth pursuit in patients with downbeat nystagmus. Ann N Y Acad Sci 1039:532–535

    Article  PubMed  Google Scholar 

  23. Kalla R, Deutschlander A, Hüfner K, Stephan T, Jahn K, Glasauer S et al (2006) Detection of floccular hypometabolism in downbeat nystagmus by fMRI. Neurology 66:281–283

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to K. Ogston for critically reading the manuscript. This work was supported by the Deutsche Forschungsgemeinschaft (Gl 342/1-3; BR 639/6-3), Swiss National Science Foundation (31-63465.00/#3200BO-1054534), and Betty and David Koetser Foundation for Brain Research.

Conflicts of interest

The authors have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Glasauer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Glasauer, S., Stephan, T., Kalla, R. et al. Up–Down Asymmetry of Cerebellar Activation During Vertical Pursuit Eye Movements. Cerebellum 8, 385–388 (2009). https://doi.org/10.1007/s12311-009-0109-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12311-009-0109-5

Keywords

Navigation