Skip to main content

Advertisement

Log in

T Cells and Stromal Fibroblasts in Human Tumor Microenvironments Represent Potential Therapeutic Targets

  • Review Paper
  • Published:
Cancer Microenvironment

Abstract

The immune system of cancer patients recognizes tumor-associated antigens expressed on solid tumors and these antigens are able to induce tumor-specific humoral and cellular immune responses. Diverse immunotherapeutic strategies have been used in an attempt to enhance both antibody and T cell responses to tumors. While several tumor vaccination strategies significantly increase the number of tumor-specific lymphocytes in the blood of cancer patients, most vaccinated patients ultimately experience tumor progression. CD4+ and CD8+ T cells with an effector memory phenotype infiltrate human tumor microenvironments, but most are hyporesponsive to stimulation via the T cell receptor (TCR) and CD28 under conditions that activate memory T cells derived from the peripheral blood of the cancer patients or normal donors. Attempts to identify cells and molecules responsible for the TCR signaling arrest of tumor-infiltrating T cells have focused largely upon the immunosuppressive effects of tumor cells, tolerogenic dendritic cells and regulatory T cells. Here we review potential mechanisms by which human T cell function is arrested in the tumor microenvironment with a focus on the immunomodulatory effects of stromal fibroblasts. Determining in vivo which cells and molecules are responsible for the TCR arrest in human tumor-infiltrating T cells will be necessary to formulate and test strategies to prevent or reverse the signaling arrest of the human T cells in situ for a more effective design of tumor vaccines. These questions are now addressable using novel human xenograft models of tumor microenvironments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

DC:

dendritic cell

TAF:

tumor-associated fibroblast

MDSC:

myeloid-derived suppressor cell

MSC:

mesenchymal stem cell

TIL:

tumor-infiltrating T cells

TCR:

T cell receptor

TGF-β1:

Transforming growth factor-β1

References

  1. Berd D, Mastrangelo MJ, Lattime E, Sato T, Maguire HC Jr (1996) Melanoma and vitiligo: immunology’s Grecian urn. Cancer Immunol Immunother 42:263–267

    Article  CAS  PubMed  Google Scholar 

  2. Barnhill RL, Mihm MC (1992) Histopathology of malignant melanoma and its precursor lesions. In: Balch CM, Houghton AN, Milton GW, Sober AJ, Soong S (eds) Cutaneous melanoma, 2nd edn. JB Lippincott, Oxford

    Google Scholar 

  3. Balch CM, Soong S, Shaw HM, Urist MM, McCarthy WH (1992) An analysis of prognostic factors in 8500 patients with cutaneous melanoma. In: Balch CM, Houghton AN, Milton GW, Sober AJ, Soong S (eds) cutaneous melanoma, 2nd edn. JB Lippincott, Oxford

    Google Scholar 

  4. Cook MG (1992) The significance of inflammation and regression in melanoma. Virchows Arch A Pathol Anat Histopathol 420:113–115

    Article  CAS  PubMed  Google Scholar 

  5. Galon J, Costes A, Sanchez-Cabo F, Kirilovsky A, Mlecnik B, Lagorce-Pages C, Tosolini M, Camus M, Berger A, Wind P, Zinzindohoue F, Bruneval P, Cugnenc PH, Trajanoski Z, Fridman WH, Pages F (2006) Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science 313:1960–1964

    Article  CAS  PubMed  Google Scholar 

  6. Dunn GP, Bruce AT, Ikeda H, Old LJ, Schreiber RD (2002) Cancer immunoediting: from immunosurveillance to tumor escape. Nat Immunol 3:991–998

    Article  CAS  PubMed  Google Scholar 

  7. Smyth MJ, Godfrey DI, Trapani JA (2001) A fresh look at tumor immunosurveillance and immunotherapy. Nat Immunol 2:293–299

    Article  CAS  PubMed  Google Scholar 

  8. Melief CJ, Toes RE, Medema JP, van der Burg SH, Ossendorp F, Offringa R (2000) Strategies for immunotherapy of cancer. Adv Immunol 75:235–282

    Article  CAS  PubMed  Google Scholar 

  9. Pardoll D (2003) Does the immune system see tumors as foreign or self? Annu Rev Immunol 21:807–839

    Article  CAS  PubMed  Google Scholar 

  10. Finn OJ (2003) Cancer vaccines: between the idea and the reality. Nat Rev Immunol 3:630–641

    Article  CAS  PubMed  Google Scholar 

  11. Khong HT, Restifo NP (2002) Natural selection of tumor variants in the generation of “tumor escape” phenotypes. Nat immunol 3:999–1005

    Article  CAS  PubMed  Google Scholar 

  12. Gilboa E (2004) The promise of cancer vaccines. Nat Rev Cancer 4:401–411

    Article  CAS  PubMed  Google Scholar 

  13. Odunsi K, Jungbluth AA, Stockert E, Qian F, Gnjatic S, Tammela J, Intengan M, Beck A, Keitz B, Santiago D, Williamson B, Scanlan MJ, Ritter G, Chen YT, Driscoll D, Sood A, Lele S, Old LJ (2003) NY-ESO-1 and LAGE-1 cancer-testis antigens are potential targets for immunotherapy in epithelial ovarian cancer. Cancer Res 63:6076–6083

    CAS  PubMed  Google Scholar 

  14. Jager E, Karbach J, Gnjatic S, Neumann A, Bender A, Valmori D, Ayyoub M, Ritter E, Ritter G, Jager D, Panicali D, Hoffman E, Pan L, Oettgen H, Old LJ, Knuth A (2006) Recombinant vaccinia/fowlpox NY-ESO-1 vaccines induce both humoral and cellular NY-ESO-1-specific immune responses in cancer patients. Proc Natl Acad Sci USA 103:14453–14458

    Article  PubMed  CAS  Google Scholar 

  15. Valmori D, Souleimanian NE, Tosello V, Bhardwaj N, Adams S, O’Neill D, Pavlick A, Escalon JB, Cruz CM, Angiulli A, Angiulli F, Mears G, Vogel SM, Pan L, Jungbluth AA, Hoffmann EW, Venhaus R, Ritter G, Old LJ, Ayyoub M (2007) Vaccination with NY-ESO-1 protein and CpG in Montanide induces integrated antibody/Th1 responses and CD8 T cells through cross-priming. Proc Natl Acad Sci USA 104:8947–8952

    Article  CAS  PubMed  Google Scholar 

  16. Zou W (2005) Immunosuppressive networks in the tumour environment and their therapeutic relevance. Nat Rev Cancer 5:263–274

    Article  CAS  PubMed  Google Scholar 

  17. Chiou SH, Sheu BC, Chang WC, Huang SC, Hong-Nerng H (2005) Current concepts of tumor-infiltrating lymphocytes in human malignancies. J Reprod Immunol 67:35–50

    Article  CAS  PubMed  Google Scholar 

  18. Rangarajan A, Weinberg RA (2003) Opinion: comparative biology of mouse versus human cells: modelling human cancer in mice. Nat Rev Cancer 3:952–959

    Article  CAS  PubMed  Google Scholar 

  19. Steinman RM, Mellman I (2004) Immunotherapy: bewitched, bothered, and bewildered no more. Science 305:197–200

    Article  CAS  PubMed  Google Scholar 

  20. Broderick L, Bankert RB (2006) Membrane-associated TGF-beta1 inhibits human memory T cell signaling in malignant and nonmalignant inflammatory microenvironments. J Immunol 177:3082–3088

    CAS  PubMed  Google Scholar 

  21. Mestas J, Hughes CC (2004) Of mice and not men: differences between mouse and human immunology. J Immunol 172:2731–2738

    CAS  PubMed  Google Scholar 

  22. Schreiber H, Rowley DA (1999) Inflammation and cancer. In: Gallin JI, Smyderman R (eds) Inflammation: basic principles and clinical correlates, 3rd edn. Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  23. Broderick L, Yokota SJ, Reineke J, Mathiowitz E, Stewart CC, Barcos M, Kelleher RJ Jr, Bankert RB (2005) Human CD4+ effector memory T cells persisting in the microenvironment of lung cancer xenografts are activated by local delivery of IL-12 to proliferate, produce IFN-gamma, and eradicate tumor cells. J Immunol 174:898–906

    CAS  PubMed  Google Scholar 

  24. Agrawal S, Marquet J, Delfau-Larue MH, Copie-Bergman C, Jouault H, Reyes F, Bensussan A, Farcet JP (1998) CD3 hyporesponsiveness and in vitro apoptosis are features of T cells from both malignant and nonmalignant secondary lymphoid organs. J Clin Invest 102:1715–1723

    Article  CAS  PubMed  Google Scholar 

  25. Radoja S, Saio M, Schaer D, Koneru M, Vukmanovic S, Frey AB (2001) CD8(+) tumor-infiltrating T cells are deficient in perforin-mediated cytolytic activity due to defective microtubule-organizing center mobilization and lytic granule exocytosis. J Immunol 167:5042–5051

    CAS  PubMed  Google Scholar 

  26. Schwartz RH (2003) T cell anergy. Annu Rev Immunol 21:305–334

    Article  CAS  PubMed  Google Scholar 

  27. Beyer M, Schultze JL (2006) Regulatory T cells in cancer. Blood 108:804–811

    Article  CAS  PubMed  Google Scholar 

  28. Shevach EM (2009) Mechanisms of foxp3+ T regulatory cell-mediated suppression. Immunity 30:636–645

    Article  CAS  PubMed  Google Scholar 

  29. Waldmann H, Cobbold S (2009) Regulatory T cells: context matters. Immunity 30:613–615

    Article  CAS  PubMed  Google Scholar 

  30. Battaglia M, Roncarolo MG (2009) The fate of human Treg cells. Immunity 30:763–765

    Article  CAS  PubMed  Google Scholar 

  31. Miyara M, Yoshioka Y, Kitoh A, Shima T, Wing K, Niwa A, Parizot C, Taflin C, Heike T, Valeyre D, Mathian A, Nakahata T, Yamaguchi T, Nomura T, Ono M, Amoura Z, Gorochov G, Sakaguchi S (2009) Functional delineation and differentiation dynamics of human CD4+ T cells expressing the FoxP3 transcription factor. Immunity 30:899–911

    Article  CAS  PubMed  Google Scholar 

  32. Sato E, Olson SH, Ahn J, Bundy B, Nishikawa H, Qian F, Jungbluth AA, Frosina D, Gnjatic S, Ambrosone C, Kepner J, Odunsi T, Ritter G, Lele S, Chen YT, Ohtani H, Old LJ, Odunsi K (2005) Intraepithelial CD8+ tumor-infiltrating lymphocytes and a high CD8+/regulatory T cell ratio are associated with favorable prognosis in ovarian cancer. Proc Natl Acad Sci 102:18538–18543

    Article  CAS  PubMed  Google Scholar 

  33. Curiel T, Zou W, Curiel TJ, Coukos G, Zou L, Alvarez X, Cheng P, Mottram P, Evdemon-Hogan M, Conejo-Garcia JR, Zhang L, Burow M, Zhu Y, Wei S, Kryczek I, Daniel B, Gordon A, Myers L, Lackner A, Disis ML, Knutson KL, Chen L, Zou W (2004) Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat Med 10:942–949

    Google Scholar 

  34. Hilchey SP, De A, Rimsza LM, Bankert RB, Bernstein SH (2007) Follicular lymphoma intratumoral CD4 + CD25 + GITR + regulatory T cells potently suppress CD3/CD28-costimulated autologous and allogeneic CD8 + CD25- and CD4 + CD25- T cells. J Immunol 178:4051–4061

    CAS  PubMed  Google Scholar 

  35. Shevach EM (2002) CD4+ CD25+ suppressor T cells: more questions than answers. Nat Rev Immunol 2:389–400

    CAS  PubMed  Google Scholar 

  36. Wood KJ, Sakaguchi S (2003) Regulatory T cells in transplantation tolerance. Nat Rev Immunol 3:199–210

    Article  CAS  PubMed  Google Scholar 

  37. von Herrath MG, Harrison LC (2003) Antigen-induced regulatory T cells in autoimmunity. Nat Rev Immunol 3:223–232

    Article  CAS  Google Scholar 

  38. Bach JF (2003) Regulatory T cells under scrutiny. Nat Rev Immunol 3:189–198

    Article  PubMed  CAS  Google Scholar 

  39. Read S, Powrie F (2001) CD4(+) regulatory T cells. Curr Opin Immunol 13:644–649

    Article  CAS  PubMed  Google Scholar 

  40. Dieckmann D, Plottner H, Berchtold S, Berger T, Schuler G (2001) Ex vivo isolation and characterization of CD4(+)CD25(+) T cells with regulatory properties from human blood. J Exp Med 193:1303–1310

    Article  CAS  PubMed  Google Scholar 

  41. Ng WF, Duggan PJ, Ponchel F, Matarese G, Lombardi G, Edwards AD, Isaacs JD, Lechler RI (2001) Human CD4(+)CD25(+) cells: a naturally occurring population of regulatory T cells. Blood 98:2736–2744

    Article  CAS  PubMed  Google Scholar 

  42. Levings MK, Sangregorio R, Roncarolo MG (2001) Human cd25(+)cd4(+) t regulatory cells suppress naive and memory T cell proliferation and can be expanded in vitro without loss of function. J Exp Med 193:1295–1302

    Article  CAS  PubMed  Google Scholar 

  43. Boon T, Coulie PG, Van den Eynde BJ, van der Bruggen P (2006) Human T cell responses against melanoma. Annu Rev Immunol 24:175–208

    Article  CAS  PubMed  Google Scholar 

  44. Kryczek I, Wei S, Zou L, Altuwaijri S, Szeliga W, Kolls J, Chang A, Zou W (2007) Cutting edge: Th17 and regulatory T cell dynamics and the regulation by IL-2 in the tumor microenvironment. J Immunol 178:6730–6733

    CAS  PubMed  Google Scholar 

  45. Miyahara Y, Odunsi K, Chen W, Peng G, Matsuzaki J, Wang RF (2008) Generation and regulation of human CD4+ IL-17-producing T cells in ovarian cancer. Proc Natl Acad Sci USA 105:15505–15510

    Article  CAS  PubMed  Google Scholar 

  46. Kryczek I, Banerjee M, Cheng P, Vatan L, Szeliga W, Wei S, Huang E, Finlayson E, Simeone D, Welling TH, Chang A, Coukos G, Liu R, Zou W (2009) Phenotype, distribution, generation, and functional and clinical relevance of Th17 cells in the human tumor environments. Blood 114:1141–1149

    Article  CAS  PubMed  Google Scholar 

  47. Weaver CT, Hatton RD, Mangan PR, Harrington LE (2007) IL-17 family cytokines and the expanding diversity of effector T cell lineages. Annu Rev Immunol 25:821–852

    Article  CAS  PubMed  Google Scholar 

  48. Chen Z, O’Shea JJ (2008) Regulation of IL-17 production in human lymphocytes. Cytokine 41:71–78

    Article  PubMed  CAS  Google Scholar 

  49. Miossec P, Korn T, Kuchroo VK (2009) Interleukin-17 and type 17 helper T cells. N Engl J Med 361:888–898

    Article  CAS  PubMed  Google Scholar 

  50. Gaffen SL (2009) Structure and signalling in the IL-17 receptor family. Nat Rev Immunol 9:556–567

    Article  CAS  PubMed  Google Scholar 

  51. Murugaiyan G, Saha B (2009) Protumor vs antitumor functions of IL-17. J Immunol 183:4169–4175

    Article  CAS  PubMed  Google Scholar 

  52. Broderick L, Brooks SP, Takita H, Baer AN, Bernstein JM, Bankert RB (2006) IL-12 reverses anergy to T cell receptor triggering in human lung tumor-associated memory T cells. Clin Immunol 118:159–169

    Article  CAS  PubMed  Google Scholar 

  53. Mizoguchi H, O’Shea JJ, Longo DL, Loeffler CM, McVicar DW, Ochoa AC (1992) Alterations in signal transduction molecules in T lymphocytes from tumor-bearing mice. Science 258:1795–1798

    Article  CAS  PubMed  Google Scholar 

  54. Whiteside T (2004) Down-Regulation of z-chain expression in T cells: a biomarker of prognosis of cancer? Cancer Immunol Immunother 53:865–878

    CAS  PubMed  Google Scholar 

  55. Rodriguez PC, Ochoa AC (2006) T cell dysfunction in cancer: role of myeloid cells and tumor cells regulating amino acid availability and oxidative stress. Semin Cancer Biol 16:66–72

    Article  CAS  PubMed  Google Scholar 

  56. Koneru M, Schaer D, Monu N, Ayala A, Frey AB (2005) Defective proximal TCR signaling inhibits CD8+ tumor-infiltrating lymphocyte lytic function. J Immunol 174:1830–1840

    CAS  PubMed  Google Scholar 

  57. Kosugi A, Sakakura J, Yasuda K, Ogata M, Hamaoka T (2001) Involvement of SHP-1 tyrosine phosphatase in TCR-mediated signaling pathways in lipid rafts. Immunity 14:669–680

    Article  CAS  PubMed  Google Scholar 

  58. Sathish JG, Dolton G, Leroy FG, Matthews RJ (2007) Loss of Src homology region 2 domain-containing protein tyrosine phosphatase-1 increases CD8+ T cell-APC conjugate formation and is associated with enhanced in vivo CTL function. J Immunol 178:330–337

    CAS  PubMed  Google Scholar 

  59. Chemnitz JM, Parry RV, Nichols KE, June CH, Riley JL (2004) SHP-1 and SHP-2 associate with immunoreceptor tyrosine-based switch motif of programmed death 1 upon primary human T cell stimulation, but only receptor ligation prevents T cell activation. J Immunol 173:945–954

    CAS  PubMed  Google Scholar 

  60. Trautmann L, Janbazian L, Chomont N, Said EA, Gimmig S, Bessette B, Boulassel MR, Delwart E, Sepulveda H, Balderas RS, Routy JP, Haddad EK, Sekaly RP (2006) Upregulation of PD-1 expression on HIV-specific CD8+ T cells leads to reversible immune dysfunction. Nat Med 12:1198–1202

    Article  CAS  PubMed  Google Scholar 

  61. Barber DL, Wherry EJ, Masopust D, Zhu B, Allison JP, Sharpe AH, Freeman GJ, Ahmed R (2006) Restoring function in exhausted CD8 T cell during chronic viral infections. Nature 439:682–687

    Article  CAS  PubMed  Google Scholar 

  62. Freeman GJ, Wherry EJ, Ahmed R, Sharpe AH (2006) Reinvigorating exhausted HIV-specific T cells via PD-1-PD-1 ligand blockade. J Exp Med 203:2223–2227

    Article  CAS  PubMed  Google Scholar 

  63. Thompson RH, Dong H, Lohse CM, Leibovich BC, Blute ML, Cheville JC, Kwon ED (2007) PD-1 is expressed by tumor-infiltrating immune cells and is associated with poor outcome for patients with renal cell carcinoma. Clin Cancer Res 13:1757–1761

    Article  CAS  PubMed  Google Scholar 

  64. Nazareth MR, Broderick L, Simpson-Abelson MR, Kelleher RJ Jr, Yokota SJ, Bankert RB (2007) Characterization of human lung tumor-associated fibroblasts and their ability to modulate the activation of tumor-associated T cells. J Immunol 178:5552–5562

    CAS  PubMed  Google Scholar 

  65. Olenchock BA, Guo R, Carpenter JH, Jordan M, Topham MK, Koretzky GA, Zhong XP (2006) Disruption of diacylglycerol metabolism impairs the induction of T cell anergy. Nat Immunol 7:1174–1181

    Article  CAS  PubMed  Google Scholar 

  66. Zha Y, Marks R, Ho AW, Peterson AC, Janardhan S, Brown I, Praveen K, Stang S, Stone JC, Gajewski TF (2006) T cell anergy is reversed by active Ras and is regulated by diacylglycerol kinase-alpha. Nat Immunol 7:1166–1173

    Article  CAS  PubMed  Google Scholar 

  67. Uzzo RG, Rayman P, Kolenko V, Clark PE, Cathcart MK, Bloom T, Novick AC, Bukowski RM, Hamilton T, Finke JH (1999) Renal cell carcinoma-derived gangliosides suppress nuclear factor-kappaB activation in T cells. J Clin Invest 104:769–776

    Article  CAS  PubMed  Google Scholar 

  68. Weil R, Israel A (2006) Deciphering the pathway from the TCR to NF-kappaB. Cell Death Differ 13:826–833

    Article  CAS  PubMed  Google Scholar 

  69. Nel AE, Slaughter N (2002) T-cell activation through the antigen receptor. Part 2: role of signaling cascades in T-cell differentiation, anergy, immune senescence, and development of immunotherapy. J Allergy Clin Immunol 109:901–915

    Article  CAS  PubMed  Google Scholar 

  70. Nel AE (2002) T-cell activation through the antigen receptor. Part 1: signaling components, signaling pathways, and signal integration at the T-cell antigen receptor synapse. J Allergy Clin Immunol 109:758–770

    Article  CAS  PubMed  Google Scholar 

  71. Li MO, Sanjabi S, Wan YY, Robertson AL, Flavell RA (2006) Transforming growth factor-β of immune responses. Annu Rev Immunol 24:99–146

    Article  CAS  PubMed  Google Scholar 

  72. Kulkarni AB, Huh CG, Becker D, Geiser A, Lyght M, Flanders KC, Roberts AB, Sporn MB, Ward JM, Karlsson S (1993) Transforming growth factor beta 1 null mutation in mice causes excessive inflammatory response and early death. Proc Natl Acad Sci USA 90:770–774

    Article  CAS  PubMed  Google Scholar 

  73. Letterio JJ, Roberts AB (1998) Regulation of immune responses by TGF-beta. Annu Rev Immunol 16:137–161

    Article  CAS  PubMed  Google Scholar 

  74. Shull MM, Ormsby I, Kier AB, Pawlowski S, Diebold RJ, Yin M, Allen R, Sidman C, Proetzel G, Calvin D et al (1992) Targeted disruption of the mouse transforming growth factor-beta 1 gene results in multifocal inflammatory disease. Nature 359:693–699

    Article  CAS  PubMed  Google Scholar 

  75. Wrzesinski SH, Wan YY, Flavell RA (2007) Transforming growth factor-β and the immune response: implications for anticancer therapy. Clin Cancer Res 13:5262–5270

    Article  CAS  PubMed  Google Scholar 

  76. Saunier EF, Akhurst RJ (2006) TGF beta inhibition for cancer therapy. Curr Cancer Drug Targets 6:565–578

    Article  CAS  PubMed  Google Scholar 

  77. Ahmadzadeh M, Rosenberg SA (2005) TGF-beta 1 attenuates the acquisition and expression of effector function by tumor antigen-specific human memory CD8 T cells. J Immunol 174:5215–5223

    CAS  PubMed  Google Scholar 

  78. Byrne SN, Knox MC, Halliday GM (2008) TGFbeta is responsible for skin tumour infiltration by macrophages enabling the tumours to escape immune destruction. Immunol Cell Biol 86:92–7

    Google Scholar 

  79. Chen CH, Seguin-Devaux C, Burke NA, Oriss TB, Watkins SC, Clipstone N, Ray A (2003) Transforming growth factor beta blocks Tec kinase phosphorylation, Ca2+ influx, and NFATc translocation causing inhibition of T cell differentiation. J Exp Med 197:1689–1699

    Article  CAS  PubMed  Google Scholar 

  80. Leivonen SK, Kahari VM (2007) Transforming growth factor-beta signaling in cancer invasion and metastasis. Int J Cancer 121:2119–2124

    Article  CAS  PubMed  Google Scholar 

  81. Colombo MP, Trinchieri G (2002) Interleukin-12 in anti-tumor immunity and immunotherapy. Cytokine Growth Factor Rev 13:155–168

    Article  CAS  PubMed  Google Scholar 

  82. Del Vecchio M, Bajetta E, Canova S, Lotze MT, Wesa A, Parmiani G, Anichini A (2007) Interleukin-12: biological properties and clinical application. Clin Cancer Res 13:4677–4685

    Article  PubMed  Google Scholar 

  83. Yoo JK, Cho JH, Lee SW, Sung YC (2002) IL-12 provides proliferation and survival signals to murine CD4+ T cells through phosphatidylinositol 3-kinase/Akt signaling pathway. J Immunol 169:3637–3643

    CAS  PubMed  Google Scholar 

  84. Tatsumi T, Takehara T, Yamaguchi S, Sasakawa A, Miyagi T, Jinushi M, Sakamori R, Kohga K, Uemura A, Ohkawa K, Storkus WJ, Hayashi N (2007) Injection of IL-12 gene-transduced dendritic cells into mouse liver tumor lesions activates both innate and acquired immunity. Gene Ther 14:863–871

    Article  CAS  PubMed  Google Scholar 

  85. Simpson-Abelson M, Bankert RB (2008) Targeting the TCR signaling checkpoint: a therapeutic strategy to reactivate memory T cells in the tumor microenvironment. Expert Opin Ther Targets 12:477–490

    Article  CAS  PubMed  Google Scholar 

  86. Egilmez NK, Hess SD, Chen FA, Takita H, Conway TF, Bankert RB (2002) Human CD4+ effector T cells mediate indirect interleukin-12- and interferon-gamma-dependent suppression of autologous HLA-negative lung tumor xenografts in severe combined immunodeficient mice. Cancer Res 62:2611–2617

    CAS  PubMed  Google Scholar 

  87. Hess SD, Egilmez NK, Bailey N, Anderson TM, Mathiowitz E, Bernstein SH, Bankert RB (2003) Human CD4+ T cells present within the microenvironment of human lung tumors are mobilized by the local and sustained release of IL-12 to kill tumors in situ by indirect effects of IFN-gamma. J Immunol 170:400–412

    CAS  PubMed  Google Scholar 

  88. Kilinc MO, Aulakh KS, Nair RE, Jones SA, Alard P, Kosiewicz MM, Egilmez NK (2006) Reversing tumor immune suppression with intratumoral IL-12: activation of tumor-associated T effector/memory cells, induction of T suppressor apoptosis, and infiltration of CD8+ T effectors. J Immunol 177:6962–6973

    CAS  PubMed  Google Scholar 

  89. Tomlinson MG, Heath VL, Turck CW, Watson SP, Weiss A (2004) SHIP family inositol phosphatases interact with and negatively regulate the Tec tyrosine kinase. J Biol Chem 279:55089–55096

    Article  CAS  PubMed  Google Scholar 

  90. Berg LJ, Finkelstein LD, Lucas JA, Schwartzberg PL (2005) Tec family kinases in T lymphocyte development and function. Annu Rev Immunol 23:549–600

    Article  CAS  PubMed  Google Scholar 

  91. Markiewicz MA, Wise EL, Buchwald ZS, Cheney EE, Hansen TH, Suri A, Cemerski S, Allen PM, Shaw AS (2009) IL-12 enhances CTL synapse formation and induces self-reactivity. J Immunol 182:1351–1361

    CAS  PubMed  Google Scholar 

  92. Kalluri R, Zeisberg M (2006) Fibroblasts in cancer. Nat Rev Cancer 6:392–401

    Article  CAS  PubMed  Google Scholar 

  93. Silzle T, Randolph GJ, Kreutz M, Kunz-Schughart LA (2004) The fibroblast: sentinel cell and local immune modulator in tumor tissue. Int J Cancer 108:173–180

    Article  CAS  PubMed  Google Scholar 

  94. Baglole CJ, Ray DM, Bernstein SH, Feldon SE, Smith TJ, Sime PJ, Phipps RP (2006) More than structural cells, fibroblasts create and orchestrate the tumor microenvironment. Immunol Invest 35:297–325

    Article  CAS  PubMed  Google Scholar 

  95. Strutz F, Okada H, Lo CW, Danoff T, Carone RL, Tomaszewski JE, Neilson EG (1995) Identification and characterization of a fibroblast marker: FSP1. J Cell Biol 130:393–405

    Article  CAS  PubMed  Google Scholar 

  96. Hinz B, Phan SH, Thannickal VJ, Galli A, Bochaton-Piallat ML, Gabbiani G (2007) The myofibroblast: one function, multiple origins. Am J Pathol 170:1807–1816

    Article  CAS  PubMed  Google Scholar 

  97. Jones EA, Kinsey SE, English A, Jones RA, Straszynski L, Meredith DM, Markham AF, Jack A, Emery P, McGonagle D (2002) Isolation and characterization of bone marrow multipotential mesenchymal progenitor cells. Arthritis Rheum 46:3349–3360

    Article  PubMed  Google Scholar 

  98. Boisvert M, Gendron S, Chetoui N, Aoudjit F (2007) Alpha2 beta1 integrin signaling augments T cell receptor-dependent production of interferon-gamma in human T cells. Mol Immunol 44:3732–3740

    Article  CAS  PubMed  Google Scholar 

  99. Sturm A, Krivacic KA, Fiocchi C, Levine AD (2004) Dual function of the extracellular matrix: stimulatory for cell cycle progression of naive T cells and antiapoptotic for tissue-derived memory T cells. J Immunol 173:3889–3900

    CAS  PubMed  Google Scholar 

  100. Davis LS, Oppenheimer-Marks N, Bednarczyk JL, McIntyre BW, Lipsky PE (1990) Fibronectin promotes proliferation of naive and memory T cells by signaling through both the VLA-4 and VLA-5 integrin molecules. J Immunol 145:785–793

    CAS  PubMed  Google Scholar 

  101. Rao WH, Hales JM, Camp RD (2000) Potent costimulation of effector T lymphocytes by human collagen type I. J Immunol 165:4935–4940

    CAS  PubMed  Google Scholar 

  102. Jones S, Horwood N, Cope A, Dazzi F (2007) The antiproliferative effect of mesenchymal stem cells is a fundamental property shared by all stromal cells. J Immunol 179:2824–2831

    CAS  PubMed  Google Scholar 

  103. Bocelli-Tyndall C, Barbero A, Candrian C, Ceredig R, Tyndall A, Martin I (2006) Human articular chondrocytes suppress in vitro proliferation of anti-CD3 activated peripheral blood mononuclear cells. J Cell Physiol 209:732–734

    Article  CAS  PubMed  Google Scholar 

  104. Haniffa MA, Wang XN, Holtick U, Rae M, Isaacs JD, Dickinson AM, Hilkens CM, Collin MP (2007) Adult human fibroblasts are potent immunoregulatory cells and functionally equivalent to mesenchymal stem cells. J Immunol 179:1595–1604

    CAS  PubMed  Google Scholar 

  105. English K, Barry FP, Field-Corbett CP, Mahon BP (2007) IFN-gamma and TNF-alpha differentially regulate immunomodulation by murine mesenchymal stem cells. Immunol Lett 110:91–100

    Article  CAS  PubMed  Google Scholar 

  106. Zappia E, Casazza S, Pedemonte E, Benvenuto F, Bonanni I, Gerdoni E, Giunti D, Ceravolo A, Cazzanti F, Frassoni F, Mancardi G, Uccelli A (2005) Mesenchymal stem cells ameliorate experimental autoimmune encephalomyelitis inducing T-cell anergy. Blood 106:1755–1761

    Article  CAS  PubMed  Google Scholar 

  107. Pinchuk IV, Saada JI, Beswick EJ, Boya G, Qiu SM, Mifflin RC, Raju GS, Reyes VE, Powell DW (2008) PD-1 ligand expression by human colonic myofibroblasts/fibroblasts regulates CD4+ T-cell activity. Gastroenterology 135:1228–1237, 1237.e1–2

    Article  CAS  PubMed  Google Scholar 

  108. Lee SK, Seo SH, Kim BS, Kim CD, Lee JH, Kang JS, Maeng PJ, Lim JS (2005) IFN-gamma regulates the expression of B7-H1 in dermal fibroblast cells. J Dermatol Sci 40:95–103

    Article  CAS  PubMed  Google Scholar 

  109. Young E, Stark WJ (1988) In vitro immunological function of human corneal fibroblasts. Invest Ophthalmol Vis Sci 29:1402–1406

    CAS  PubMed  Google Scholar 

  110. Filer A, Parsonage G, Smith E, Osborne C, Thomas AM, Curnow SJ, Rainger GE, Raza K, Nash GB, Lord J, Salmon M, Buckley CD (2006) Differential survival of leukocyte subsets mediated by synovial, bone marrow, and skin fibroblasts: site-specific versus activation-dependent survival of T cells and neutrophils. Arthritis Rheum 54:2096–2108

    Article  CAS  PubMed  Google Scholar 

  111. Nanki T, Nagasaka K, Hayashida K, Saita Y, Miyasaka N (2001) Chemokines regulate IL-6 and IL-8 production by fibroblast-like synoviocytes from patients with rheumatoid arthritis. J Immunol 167:5381–5385

    CAS  PubMed  Google Scholar 

  112. Georganas C, Liu H, Perlman H, Hoffmann A, Thimmapaya B, Pope RM (2000) Regulation of IL-6 and IL-8 expression in rheumatoid arthritis synovial fibroblasts: the dominant role for NF-kappa B but not C/EBP beta or c-Jun. J Immunol 165:7199–7206

    CAS  PubMed  Google Scholar 

  113. Bombara MP, Webb DL, Conrad P, Marlor CW, Sarr T, Ranges GE, Aune TM, Greve JM, Blue ML (1993) Cell contact between T cells and synovial fibroblasts causes induction of adhesion molecules and cytokines. J Leukoc Biol 54:399–406

    CAS  PubMed  Google Scholar 

  114. Thiele K, Riemann D, Navarrete Santos A, Langner J, Kehlen A (2000) Cell-cell contact of human T cells with fibroblasts changes lymphocytic mRNA expression: increased mRNA expression of interleukin-17 and interleukin-17 receptor. Eur Cytokine Netw 11:53–58

    CAS  PubMed  Google Scholar 

  115. Sporri B, Bickel M, Limat A, Waelti ER, Hunziker T, Wiesmann UN (1997) Autologous versus allogeneic T cell-stimulated IL-6 production by dermal fibroblasts. Inflammation 21:371–378

    Article  CAS  PubMed  Google Scholar 

  116. Akashi M, Loussararian AH, Adelman DC, Saito M, Koeffler HP (1990) Role of lymphotoxin in expression of interleukin 6 in human fibroblasts. Stimulation and regulation. J Clin Invest 85:121–129

    Article  CAS  PubMed  Google Scholar 

  117. Hwang SY, Kim JY, Kim KW, Park MK, Moon Y, Kim WU, Kim HY (2004) IL-17 induces production of IL-6 and IL-8 in rheumatoid arthritis synovial fibroblasts via NF-kappaB- and PI3-kinase/Akt-dependent pathways. Arthritis Res Ther 6:R120–R128

    Article  CAS  PubMed  Google Scholar 

  118. Miranda-Carus ME, Balsa A, Benito-Miguel M, Perez de Ayala C, Martin-Mola E (2004) IL-15 and the initiation of cell contact-dependent synovial fibroblast-T lymphocyte cross-talk in rheumatoid arthritis: effect of methotrexate. J Immunol 173:1463–1476

    CAS  PubMed  Google Scholar 

  119. Boniface K, Bak-Jensen KS, Li Y, Blumenschein WM, McGeachy MJ, McClanahan TK, McKenzie BS, Kastelein RA, Cua DJ, de Waal MR (2009) Prostaglandin E2 regulates Th17 cell differentiation and function through cyclic AMP and EP2/EP4 receptor signaling. J Exp Med 206:535–548

    Article  CAS  PubMed  Google Scholar 

  120. Yamamura Y, Gupta R, Morita Y, He X, Pai R, Endres J, Freiberg A, Chung K, Fox DA (2001) Effector function of resting T cells: activation of synovial fibroblasts. J Immunol 166:2270–2275

    CAS  PubMed  Google Scholar 

  121. Yarovinsky TO, Hunninghake GW (2001) Lung fibroblasts inhibit activation-induced death of T cells through PGE(2)-dependent mechanisms. Am J Physiol Lung Cell Mol Physiol 281:L1248–L1256

    CAS  PubMed  Google Scholar 

  122. Pilling D, Akbar AN, Girdlestone J, Orteu CH, Borthwick NJ, Amft N, Scheel-Toellner D, Buckley CD, Salmon M (1999) Interferon-beta mediates stromal cell rescue of T cells from apoptosis. Eur J Immunol 29:1041–1050

    Article  CAS  PubMed  Google Scholar 

  123. Ayroldi E, Zollo O, Cannarile L, DA F, Grohmann U, Delfino DV, Riccardi C (1998) Interleukin-6 (IL-6) prevents activation-induced cell death: IL-2-independent inhibition of Fas/fasL expression and cell death. Blood 92:4212–4219

    CAS  PubMed  Google Scholar 

  124. Taub DD, Turcovski-Corrales SM, Key ML, Longo DL, Murphy WJ (1996) Chemokines and T lymphocyte activation: I. Beta chemokines costimulate human T lymphocyte activation in vitro. J Immunol 156:2095–2103

    CAS  PubMed  Google Scholar 

  125. McGettrick HM, Smith E, Filer A, Kissane S, Salmon M, Buckley CD, Rainger GE, Nash GB (2009) Fibroblasts from different sites may promote or inhibit recruitment of flowing lymphocytes by endothelial cells. Eur J Immunol 39:113–125

    Article  CAS  PubMed  Google Scholar 

  126. Williams SS, Chen FA, Kida H, Yokata S, Miya K, Kato M, Barcos MP, Wang HQ, Alosco T, Umemoto T, Croy BA, Repasky EA, Bankert RB (1996) Engraftment of human tumor-infiltrating lymphocytes and the production of anti-tumor antibodies in SCID mice. J Immunol 156:1908–1915

    CAS  PubMed  Google Scholar 

  127. Simpson-Abelson MR, Purohit VS, Pang WM, Iyer V, Odunsi K, Demmy TL, Yokota SJ, Loyall JL, Kelleher RJ Jr, Balu-Iyer S, Bankert RB (2009) IL-12 delivered intratumorally by multilamellar liposomes reactivates memory T cells in human tumor microenvironments. Clin Immunol 132:71–82

    Article  CAS  PubMed  Google Scholar 

  128. Bankert RB, Egilmez NK, Hess SD (2001) Human-SCID mouse chimeric models for the evaluation of anti-cancer therapies. Trends Immunol 22:386–393

    Article  CAS  PubMed  Google Scholar 

  129. Shultz LD, Ishikawa F, Greiner DL (2007) Humanized mice in translational biomedical research. Nat Rev Immunol 7:118–130

    Article  CAS  PubMed  Google Scholar 

  130. Shultz LD, Lyons BL, Burzenski LM, Gott B, Chen X, Chaleff S, Kotb M, Gillies SD, King M, Mangada J, Greiner DL, Handgretinger R (2005) Human lymphoid and myeloid cell development in NOD/LtSz-scid IL2R gamma null mice engrafted with mobilized human hemopoietic stem cells. J Immunol 174:6477–6489

    CAS  PubMed  Google Scholar 

  131. Sugamura K, Asao H, Kondo M, Tanaka N, Ishii N, Ohbo K, Nakamura M, Takeshita T (1996) The interleukin-2 receptor gamma chain: its role in the multiple cytokine receptor complexes and T cell development in XSCID. Annu Rev Immunol 14:179–205

    Article  CAS  PubMed  Google Scholar 

  132. Asao H, Okuyama C, Kumaki S, Ishii N, Tsuchiya S, Foster D, Sugamura K (2001) Cutting edge: the common gamma-chain is an indispensable subunit of the IL-21 receptor complex. J Immunol 167:1–5

    CAS  PubMed  Google Scholar 

  133. Shultz LD, Pearson T, King M, Giassi L, Carney L, Gott B, Lyons B, Rossini AA, Greiner DL (2007) Humanized NOD/LtSz-scid IL2 receptor common gamma chain knockout mice in diabetes research. Ann N Y Acad Sci 1103:77–89

    Article  CAS  PubMed  Google Scholar 

  134. Simpson-Abelson MR, Sonnenberg GF, Takita H, Yokota SJ, Conway TF Jr, Kelleher RJ Jr, Shultz LD, Barcos M, Bankert RB (2008) Long-term engraftment and expansion of tumor-derived memory T cells following the implantation of non-disrupted pieces of human lung tumor into NOD-scid IL2Rgamma(null) mice. J Immunol 180:7009–7018

    CAS  PubMed  Google Scholar 

  135. Ito A, Ishida T, Yano H, Inagaki A, Suzuki S, Sato F, Takino H, Mori F, Ri M, Kusumoto S, Komatsu H, Iida S, Inagaki H, Ueda R (2009) Defucosylated anti-CCR4 monoclonal antibody exercises potent ADCC-mediated antitumor effect in the novel tumor-bearing humanized NOD/Shi-scid, IL-2Rgamma(null) mouse model. Cancer Immunol Immunother 58:1195–1206

    Article  CAS  PubMed  Google Scholar 

  136. Carpenito C, Milone MC, Hassan R, Simonet JC, Lakhal M, Suhoski MM, Varela-Rohena A, Haines KM, Heitjan DF, Albelda SM, Carroll RG, Riley JL, Pastan I, June CH (2009) Control of large, established tumor xenografts with genetically retargeted human T cells containing CD28 and CD137 domains. Proc Natl Acad Sci USA 106:3360–3365

    Article  CAS  PubMed  Google Scholar 

  137. Jaiswal S, Pearson T, Friberg H, Shultz LD, Greiner DL, Rothman AL, Mathew A (2009) Dengue virus infection and virus-specific HLA-A2 restricted immune responses in humanized NOD-scid IL2rgammanull mice. PLoS ONE 4:e7251

    Article  PubMed  CAS  Google Scholar 

  138. Bousso P, Robey EA (2004) Dynamic behavior of T cells and thymocytes in lymphoid organs as revealed by two-photon microscopy. Immunity 21:349–355

    Article  CAS  PubMed  Google Scholar 

  139. Hugues S, Fetler L, Bonifaz L, Helft J, Amblard F, Amigorena S (2004) Distinct T cell dynamics in lymph nodes during the induction of tolerance and immunity. Nat immunol 5:1235–1242

    Article  CAS  PubMed  Google Scholar 

  140. Leonard JP, Sherman ML, Fisher GL, Buchanan LJ, Larsen G, Atkins MB, Sosman JA, Dutcher JP, Vogelzang NJ, Ryan JL (1997) Effects of single-dose interleukin-12 exposure on interleukin-12-associated toxicity and interferon-gamma production. Blood 90:2541–2548

    CAS  PubMed  Google Scholar 

  141. Hill HC, Conway TF Jr, Sabel MS, Jong YS, Mathiowitz E, Bankert RB, Egilmez NK (2002) Cancer immunotherapy with interleukin 12 and granulocyte-macrophage colony-stimulating factor-encapsulated microspheres: coinduction of innate and adaptive antitumor immunity and cure of disseminated disease. Cancer Res 62:7254–7263

    CAS  PubMed  Google Scholar 

  142. Nair RE, Jong YS, Jones SA, Sharma A, Mathiowitz E, Egilmez NK (2006) IL-12 + GM-CSF microsphere therapy induces eradication of advanced spontaneous tumors in her-2/neu transgenic mice but fails to achieve long-term cure due to the inability to maintain effector T-cell activity. J Immunother 29:10–20

    Article  CAS  PubMed  Google Scholar 

  143. Broderick L, Bankert RB (2006) Memory T cells in human tumor and chronic inflammatory microenvironments: sleeping beauties re-awakened by a cytokine kiss. Immunol Invest 35:419–436

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

This work was supported by National Institute of Health grants R01CA108970, R01CA131407, and R56AI079188.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard B. Bankert.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barnas, J.L., Simpson-Abelson, M.R., Yokota, S.J. et al. T Cells and Stromal Fibroblasts in Human Tumor Microenvironments Represent Potential Therapeutic Targets. Cancer Microenvironment 3, 29–47 (2010). https://doi.org/10.1007/s12307-010-0044-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12307-010-0044-5

Keywords

Navigation