Skip to main content

Advertisement

Log in

Host Defense Against Cryptococcal Disease: Is There a Role for B Cells and Antibody-Mediated Immunity?

  • Genomics and Pathogenesis (S Shoham, Section Editor)
  • Published:
Current Fungal Infection Reports Aims and scope Submit manuscript

Abstract

The role of B cells and antibody-mediated immunity (AMI) is poorly understood regarding infections with the encapsulated yeast species, Cryptococcus. Human cryptococcal disease, or cryptococcosis, generally occurs in the setting of immune suppression, including deficits of T cells and other components of cell-mediated immunity (CMI), as observed in HIV/AIDS, cancer, solid-organ transplant, and similar conditions. The protective role of CMI is, therefore, well-described in the literature. However, CMI deficiencies alone cannot adequately explain the quantum of cryptococcal disease noted in human and animal populations, and a wealth of clinical and experimental data, mostly spanning the past several decades, has shed light upon a significant role of AMI in anticryptococcal immunity. Recent evidence suggests that rather than functioning discretely, these two host immune compartments work synergistically, with the AMI modulating CMI functions in order to provide a critical balance for host benefit. We describe what is currently known.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ma H, May RC. Virulence in Cryptococcus species. Adv Appl Microbiol. 2009;67:131–90.

    CAS  PubMed  Google Scholar 

  2. Cogliati M. Global molecular epidemiology of Cryptococcus neoformans and Cryptococcus gattii: an atlas of the molecular types. Sci (Cairo). 2013;2013:675213.

    Google Scholar 

  3. Chayakulkeeree M, Perfect JR. Cryptococcosis. Infect Dis Clin N Am. 2006;20(3):507–44. v–vi.

    Google Scholar 

  4. Perfect JR, Dismukes WE, Dromer F, Goldman DL, Graybill JR, Hamill RJ, et al. Clinical practice guidelines for the management of cryptococcal disease: 2010 update by the Infectious Diseases Society of America. Clin Infect Dis. 2010;50(3):291–322.

    PubMed  Google Scholar 

  5. Jesus MS, Rodrigues WC, Barbosa G, Trilles L, Wanke B, Lazera Mdos S, et al. Cryptococcus neoformans carried by Odontomachus bauri ants. Mem Inst Oswaldo Cruz. 2012;107(4):466–9.

    PubMed  Google Scholar 

  6. Datta K, Bartlett KH, Marr KA. Cryptococcus gattii: emergence in western North America: exploitation of a novel ecological niche. Interdisc Perspect Infect Dis. 2009;2009:176532.

    Google Scholar 

  7. Datta K, Bartlett KH, Baer R, Byrnes E, Galanis E, Heitman J, et al. Spread of Cryptococcus gattii into Pacific Northwest region of the United States. Emerg Infect Dis. 2009;15(8):1185–91.

    PubMed Central  PubMed  Google Scholar 

  8. Perfect JR, Casadevall A. Cryptococcosis. Infect Dis Clin N Am. 2002;16(4):837–74. v–vi.

    Google Scholar 

  9. Perfect JR. Cryptococcosis: a model for the understanding of infectious diseases. J Clin Invest. 2014;124(5):1893–5.

    CAS  PubMed  Google Scholar 

  10. Park BJ, Wannemuehler KA, Marston BJ, Govender N, Pappas PG, Chiller TM. Estimation of the current global burden of cryptococcal meningitis among persons living with HIV/AIDS. AIDS. 2009;23(4):525–30.

    PubMed  Google Scholar 

  11. Musial CE, Cockerill 3rd FR, Roberts GD. Fungal infections of the immunocompromised host: clinical and laboratory aspects. Clin Microbiol Rev. 1988;1(4):349–64.

    CAS  PubMed Central  PubMed  Google Scholar 

  12. Chen LC, Goldman DL, Doering TL, Pirofski L, Casadevall A. Antibody response to Cryptococcus neoformans proteins in rodents and humans. Infect Immun. 1999;67(5):2218–24.

    CAS  PubMed Central  PubMed  Google Scholar 

  13. Goldman DL, Khine H, Abadi J, Lindenberg DJ, Pirofski L, Niang R, et al. Serologic evidence for Cryptococcus neoformans infection in early childhood. Pediatrics. 2001;107(5):E66.

    CAS  PubMed  Google Scholar 

  14. Garcia-Hermoso D, Janbon G, Dromer F. Epidemiological evidence for dormant Cryptococcus neoformans infection. J Clin Microbiol. 1999;37(10):3204–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  15. Chen S, Sorrell T, Nimmo G, Speed B, Currie B, Ellis D, et al. Epidemiology and host- and variety-dependent characteristics of infection due to Cryptococcus neoformans in Australia and New Zealand. Australasian Cryptococcal Study Group. Clin Infect Dis. 2000;31(2):499–508.

    CAS  PubMed  Google Scholar 

  16. Mitchell DH, Sorrell TC, Allworth AM, Heath CH, McGregor AR, Papanaoum K, et al. Cryptococcal disease of the CNS in immunocompetent hosts: influence of cryptococcal variety on clinical manifestations and outcome. Clin Infect Dis. 1995;20(3):611–6.

    CAS  PubMed  Google Scholar 

  17. Castanon-Olivares LR, Arreguin-Espinosa R, Ruiz-Palacios Y, Santos G, Lopez-Martinez R. Frequency of Cryptococcus species and varieties in Mexico and their comparison with some Latin American countries. Rev Latinoam Microbiol. 2000;42(1):35–40.

    CAS  PubMed  Google Scholar 

  18. Chen J, Varma A, Diaz MR, Litvintseva AP, Wollenberg KK, Kwon-Chung KJ. Cryptococcus neoformans strains and infection in apparently immunocompetent patients. China Emerg Infect Dis. 2008;14(5):755–62.

    CAS  Google Scholar 

  19. Litvintseva AP, Thakur R, Reller LB, Mitchell TG. Prevalence of clinical isolates of Cryptococcus gattii serotype C among patients with AIDS in Sub-Saharan Africa. J Infect Dis. 2005;192(5):888–92.

    CAS  PubMed  Google Scholar 

  20. Smith RM, Mba-Jonas A, Tourdjman M, Schimek T, DeBess E, Marsden-Haug N, et al. Treatment and outcomes among patients with Cryptococcus gattii infections in the United States Pacific Northwest. PLoS One. 2014;9(2):e88875.

    PubMed Central  PubMed  Google Scholar 

  21. Galanis E, Macdougall L, Kidd S, Morshed M. Epidemiology of Cryptococcus gattii, British Columbia, Canada, 1999–2007. Emerg Infect Dis. 2010;16(2):251–7.

    PubMed Central  PubMed  Google Scholar 

  22. Byrnes 3rd EJ, Bartlett KH, Perfect JR, Heitman J. Cryptococcus gattii: an emerging fungal pathogen infecting humans and animals. Microbes Infect. 2011;13(11):895–907.

    CAS  PubMed Central  PubMed  Google Scholar 

  23. Mitchell TG, Perfect JR. Cryptococcosis in the era of AIDS—100 years after the discovery of Cryptococcus neoformans. Clin Microbiol Rev. 1995;8(4):515–48.

    CAS  PubMed Central  PubMed  Google Scholar 

  24. Price MS, Perfect JR. Host defenses against cryptococcosis. Immunol Investig. 2011;40(7–8):786–808.

    CAS  Google Scholar 

  25. Guillot L, Carroll SF, Homer R, Qureshi ST. Enhanced innate immune responsiveness to pulmonary Cryptococcus neoformans infection is associated with resistance to progressive infection. Infect Immun. 2008;76(10):4745–56.

    CAS  PubMed Central  PubMed  Google Scholar 

  26. Vecchiarelli A, Casadevall A. Antibody-mediated effects against Cryptococcus neoformans: evidence for interdependency and collaboration between humoral and cellular immunity. Res Immunol. 1998;149(4–5):321–33. discussion 500–3.

    CAS  PubMed  Google Scholar 

  27. Yauch LE, Lam JS, Levitz SM. Direct inhibition of T-cell responses by the Cryptococcus capsular polysaccharide glucuronoxylomannan. PLoS Pathog. 2006;2(11):e120.

    PubMed Central  PubMed  Google Scholar 

  28. Vecchiarelli A, Pericolini E, Gabrielli E, Chow SK, Bistoni F, Cenci E, et al. Cryptococcus neoformans galactoxylomannan is a potent negative immunomodulator, inspiring new approaches in anti-inflammatory immunotherapy. Immunotherapy. 2011;3(8):997–1005.

    CAS  PubMed  Google Scholar 

  29. Feldmesser M, Kress Y, Novikoff P, Casadevall A. Cryptococcus neoformans is a facultative intracellular pathogen in murine pulmonary infection. Infect Immun. 2000;68(7):4225–37.

    CAS  PubMed Central  PubMed  Google Scholar 

  30. Levitz SM, Harrison TS, Tabuni A, Liu X. Chloroquine induces human mononuclear phagocytes to inhibit and kill Cryptococcus neoformans by a mechanism independent of iron deprivation. J Clin Invest. 1997;100(6):1640–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  31. Jesus MD, Nicola AM, Chow SK, Lee IR, Nong S, Specht CA, et al. Glucuronoxylomannan, galactoxylomannan, and mannoprotein occupy spatially separate and discrete regions in the capsule of Cryptococcus neoformans. Virulence. 2010;1(6):500–8.

    PubMed Central  PubMed  Google Scholar 

  32. Sundstrom JB, Cherniak R. The glucuronoxylomannan of Cryptococcus neoformans serotype A is a type 2 T-cell-independent antigen. Infect Immun. 1992;60(10):4080–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  33. Sundstrom JB, Cherniak R. T-cell-dependent and T-cell-independent mechanisms of tolerance to glucuronoxylomannan of Cryptococcus neoformans serotype A. Infect Immun. 1993;61(4):1340–5.

    CAS  PubMed Central  PubMed  Google Scholar 

  34. Pirofski L, Lui R, DeShaw M, Kressel AB, Zhong Z. Analysis of human monoclonal antibodies elicited by vaccination with a Cryptococcus neoformans glucuronoxylomannan capsular polysaccharide vaccine. Infect Immun. 1995;63(8):3005–14.

    CAS  PubMed Central  PubMed  Google Scholar 

  35. Maitta RW, Datta K, Chang Q, Luo RX, Witover B, Subramaniam K, et al. Protective and nonprotective human immunoglobulin M monoclonal antibodies to Cryptococcus neoformans glucuronoxylomannan manifest different specificities and gene use profiles. Infect Immun. 2004;72(8):4810–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  36. Diamond RD, Bennett JE. Prognostic factors in cryptococcal meningitis. A study in 111 cases. Ann Intern Med. 1974;80(2):176–81.

    CAS  PubMed  Google Scholar 

  37. Gupta S, Ellis M, Cesario T, Ruhling M, Vayuvegula B. Disseminated cryptococcal infection in a patient with hypogammaglobulinemia and normal T cell functions. Am J Med. 1987;82(1):129–31.

    CAS  PubMed  Google Scholar 

  38. Antachopoulos C, Walsh TJ, Roilides E. Fungal infections in primary immunodeficiencies. Eur J Pediatr. 2007;166(11):1099–117.

    PubMed  Google Scholar 

  39. Smith JH, Nichols MM, Goldman AS, Schmalstieg FC, Goldblum RM. Disseminated Cryptococcus in an infant with severe combined immunodeficiency. Hum Pathol. 1982;13(5):500–3.

    CAS  PubMed  Google Scholar 

  40. Iseki M, Anzo M, Yamashita N, Matsuo N. Hyper-IgM immunodeficiency with disseminated cryptococcosis. Acta Paediatr. 1994;83(7):780–2.

    CAS  PubMed  Google Scholar 

  41. Tabone MD, Leverger G, Landman J, Aznar C, Boccon-Gibod L, Lasfargues G. Disseminated lymphonodular cryptococcosis in a child with X-linked hyper-IgM immunodeficiency. Pediatr Infect Dis J. 1994;13(1):77–9.

    CAS  PubMed  Google Scholar 

  42. Nadrous HF, Antonios VS, Terrell CL, Ryu JH. Pulmonary cryptococcosis in nonimmunocompromised patients. Chest. 2003;124(6):2143–7.

    PubMed  Google Scholar 

  43. Kaplan MH, Rosen PP, Armstrong D. Cryptococcosis in a cancer hospital: clinical and pathological correlates in forty-six patients. Cancer. 1977;39(5):2265–74.

    CAS  PubMed  Google Scholar 

  44. Callard RE, Armitage RJ, Fanslow WC, Spriggs MK. CD40 ligand and its role in X-linked hyper-IgM syndrome. Immunol Today. 1993;14(11):559–64.

    CAS  PubMed  Google Scholar 

  45. Agematsu K, Nagumo H, Shinozaki K, Hokibara S, Yasui K, Terada K, et al. Absence of IgD-CD27(+) memory B cell population in X-linked hyper-IgM syndrome. J Clin Invest. 1998;102(4):853–60.

    CAS  PubMed Central  PubMed  Google Scholar 

  46. Agematsu K, Futatani T, Hokibara S, Kobayashi N, Takamoto M, Tsukada S, et al. Absence of memory B cells in patients with common variable immunodeficiency. Clin Immunol. 2002;103(1):34–42.

    CAS  PubMed  Google Scholar 

  47. Scharenberg AM, Hannibal MC, Torgerson T, Ochs HD, Rawlings DJ, et al. Common variable immune deficiency overview. In: Pagon RA, Adam MP, Ardinger HH, editors. GeneReviews® [Internet]. Seattle: University of Washington; 2006.

    Google Scholar 

  48. Dromer F, Aucouturier P, Clauvel JP, Saimot G, Yeni P. Cryptococcus neoformans antibody levels in patients with AIDS. Scand J Infect Dis. 1988;20(3):283–5.

    CAS  PubMed  Google Scholar 

  49. Houpt DC, Pfrommer GS, Young BJ, Larson TA, Kozel TR. Occurrences, immunoglobulin classes, and biological activities of antibodies in normal human serum that are reactive with Cryptococcus neoformans glucuronoxylomannan. Infect Immun. 1994;62(7):2857–64.

    CAS  PubMed Central  PubMed  Google Scholar 

  50. DeShaw M, Pirofski LA. Antibodies to the Cryptococcus neoformans capsular glucuronoxylomannan are ubiquitous in serum from HIV+ and HIV− individuals. Clin Exp Immunol. 1995;99(3):425–32.

    CAS  PubMed Central  PubMed  Google Scholar 

  51. Fleuridor R, Lyles RH, Pirofski L. Quantitative and qualitative differences in the serum antibody profiles of human immunodeficiency virus-infected persons with and without Cryptococcus neoformans meningitis. J Infect Dis. 1999;180(5):1526–35.

    CAS  PubMed  Google Scholar 

  52. Subramaniam K, French N, Pirofski LA. Cryptococcus neoformans-reactive and total immunoglobulin profiles of human immunodeficiency virus-infected and uninfected Ugandans. Clin Diagn Lab Immunol. 2005;12(10):1168–76.

    CAS  PubMed Central  PubMed  Google Scholar 

  53. Subramaniam K, Metzger B, Hanau LH, Guh A, Rucker L, Badri S, et al. IgM(+) memory B cell expression predicts HIV-associated cryptococcosis status. J Infect Dis. 2009;200(2):244–51.

    PubMed Central  PubMed  Google Scholar 

  54. Abadi J, Pirofski L. Antibodies reactive with the cryptococcal capsular polysaccharide glucuronoxylomannan are present in sera from children with and without human immunodeficiency virus infection. J Infect Dis. 1999;180(3):915–9.

    CAS  PubMed  Google Scholar 

  55. Fleuridor R, Zhong Z, Pirofski L. A human IgM monoclonal antibody prolongs survival of mice with lethal cryptococcosis. J Infect Dis. 1998;178(4):1213–6.

    CAS  PubMed  Google Scholar 

  56. Tendeiro R, Fernandes S, Foxall RB, Marcelino JM, Taveira N, Soares RS, et al. Memory B-cell depletion is a feature of HIV-2 infection even in the absence of detectable viremia. AIDS. 2012;26(13):1607–17.

    CAS  PubMed  Google Scholar 

  57. Jalali Z, Ng L, Singh N, Pirofski LA. Antibody response to Cryptococcus neoformans capsular polysaccharide glucuronoxylomannan in patients after solid-organ transplantation. Clin Vaccine Immunol. 2006;13(7):740–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  58. Baumgarth N, Tung JW, Herzenberg LA. Inherent specificities in natural antibodies: a key to immune defense against pathogen invasion. Springer Semin Immunopathol. 2005;26(4):347–62.

    CAS  PubMed  Google Scholar 

  59. Morgan G, Levinsky RJ. Clinical significance of IgG subclass deficiency. Arch Dis Child. 1988;63(7):771–3.

    CAS  PubMed Central  PubMed  Google Scholar 

  60. Casadevall A. Antibody immunity and invasive fungal infections. Infect Immun. 1995;63(11):4211–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  61. Gordon MA, Lapa E. Serum protein enhancement of antibiotic therapy in cryptococcosis. J Infect Dis. 1964;114:373–7.

    CAS  PubMed  Google Scholar 

  62. Graybill JR, Hague M, Drutz DJ. Passive immunization in murine cryptococcosis. Sabouraudia. 1981;19(4):237–44.

    CAS  PubMed  Google Scholar 

  63. Louria DB, Kaminski T. Passively-acquired immunity in experimental cryptococcosis. Sabouraudia. 1965;4(2):80–4.

    CAS  PubMed  Google Scholar 

  64. Monga DP, Kumar R, Mohapatra LN, Malaviya AN. Experimental cryptococcosis in normal and B-cell-deficient mice. Infect Immun. 1979;26(1):1–3.

    CAS  PubMed Central  PubMed  Google Scholar 

  65. Aguirre KM, Johnson LL. A role for B cells in resistance to Cryptococcus neoformans in mice. Infect Immun. 1997;65(2):525–30.

    CAS  PubMed Central  PubMed  Google Scholar 

  66. Goren MB. Experimental murine cryptococcosis: effect of hyperimmunization to capsular polysaccharide. J Immunol. 1967;98(5):914–22.

    CAS  PubMed  Google Scholar 

  67. Mukherjee J, Scharff MD, Casadevall A. Variable efficacy of passive antibody administration against diverse Cryptococcus neoformans strains. Infect Immun. 1995;63(9):3353–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  68. Rivera J, Casadevall A. Mouse genetic background is a major determinant of isotype-related differences for antibody-mediated protective efficacy against Cryptococcus neoformans. J Immunol. 2005;174(12):8017–26.

    CAS  PubMed  Google Scholar 

  69. Rivera J, Zaragoza O, Casadevall A. Antibody-mediated protection against Cryptococcus neoformans pulmonary infection is dependent on B cells. Infect Immun. 2005;73(2):1141–50.

    CAS  PubMed Central  PubMed  Google Scholar 

  70. Casadevall A, Pirofski LA. Antibody-mediated regulation of cellular immunity and the inflammatory response. Trends Immunol. 2003;24(9):474–8.

    CAS  PubMed  Google Scholar 

  71. Dromer F, Charreire J, Contrepois A, Carbon C, Yeni P. Protection of mice against experimental cryptococcosis by anti-Cryptococcus neoformans monoclonal antibody. Infect Immun. 1987;55(3):749–52.

    CAS  PubMed Central  PubMed  Google Scholar 

  72. Sanford JE, Lupan DM, Schlageter AM, Kozel TR. Passive immunization against Cryptococcus neoformans with an isotype-switch family of monoclonal antibodies reactive with cryptococcal polysaccharide. Infect Immun. 1990;58(6):1919–23.

    CAS  PubMed Central  PubMed  Google Scholar 

  73. Mukherjee J, Scharff MD, Casadevall A. Protective murine monoclonal antibodies to Cryptococcus neoformans. Infect Immun. 1992;60(11):4534–41.

    CAS  PubMed Central  PubMed  Google Scholar 

  74. Mukherjee J, Pirofski LA, Scharff MD, Casadevall A. Antibody-mediated protection in mice with lethal intracerebral Cryptococcus neoformans infection. Proc Natl Acad Sci U S A. 1993;90(8):3636–40.

    CAS  PubMed Central  PubMed  Google Scholar 

  75. Feldmesser M, Casadevall A. Effect of serum IgG1 to Cryptococcus neoformans glucuronoxylomannan on murine pulmonary infection. J Immunol. 1997;158(2):790–9.

    CAS  PubMed  Google Scholar 

  76. Maitta RW, Datta K, Pirofski LA. Efficacy of immune sera from human immunoglobulin transgenic mice immunized with a peptide mimotope of Cryptococcus neoformans glucuronoxylomannan. Vaccine. 2004;22(29–30):4062–8.

    CAS  PubMed  Google Scholar 

  77. Datta K, Lees A, Pirofski LA. Therapeutic efficacy of a conjugate vaccine containing a peptide mimotope of cryptococcal capsular polysaccharide glucuronoxylomannan. Clin Vaccine Immunol. 2008;15(8):1176–87.

    CAS  PubMed Central  PubMed  Google Scholar 

  78. Mukherjee S, Lee SC, Casadevall A. Antibodies to Cryptococcus neoformans glucuronoxylomannan enhance antifungal activity of murine macrophages. Infect Immun. 1995;63(2):573–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  79. Schlageter AM, Kozel TR. Opsonization of Cryptococcus neoformans by a family of isotype-switch variant antibodies specific for the capsular polysaccharide. Infect Immun. 1990;58(6):1914–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  80. Nakouzi A, Valadon P, Nosanchuk J, Green N, Casadevall A. Molecular basis for immunoglobulin M specificity to epitopes in Cryptococcus neoformans polysaccharide that elicit protective and nonprotective antibodies. Infect Immun. 2001;69(5):3398–409.

    CAS  PubMed Central  PubMed  Google Scholar 

  81. Casadevall A, Cleare W, Feldmesser M, Glatman-Freedman A, Goldman DL, Kozel TR, et al. Characterization of a murine monoclonal antibody to Cryptococcus neoformans polysaccharide that is a candidate for human therapeutic studies. Antimicrob Agents Chemother. 1998;42(6):1437–46.

    CAS  PubMed Central  PubMed  Google Scholar 

  82. Lendvai N, Casadevall A, Liang Z, Goldman DL, Mukherjee J, Zuckier L. Effect of immune mechanisms on the pharmacokinetics and organ distribution of cryptococcal polysaccharide. J Infect Dis. 1998;177(6):1647–59.

    CAS  PubMed  Google Scholar 

  83. Feldmesser M, Mednick A, Casadevall A. Antibody-mediated protection in murine Cryptococcus neoformans infection is associated with pleotrophic effects on cytokine and leukocyte responses. Infect Immun. 2002;70(3):1571–80.

    CAS  PubMed Central  PubMed  Google Scholar 

  84. Monari C, Casadevall A, Retini C, Baldelli F, Bistoni F, Vecchiarelli A. Antibody to capsular polysaccharide enhances the function of neutrophils from patients with AIDS against Cryptococcus neoformans. AIDS. 1999;13(6):653–60.

    CAS  PubMed  Google Scholar 

  85. Mozaffarian N, Berman JW, Casadevall A. Immune complexes increase nitric oxide production by interferon-gamma-stimulated murine macrophage-like J774.16 cells. J Leukoc Biol. 1995;57(4):657–62.

    CAS  PubMed  Google Scholar 

  86. McLean GR, Torres M, Elguezabal N, Nakouzi A, Casadevall A. Isotype can affect the fine specificity of an antibody for a polysaccharide antigen. J Immunol. 2002;169(3):1379–86.

    CAS  PubMed  Google Scholar 

  87. Yuan RR, Spira G, Oh J, Paizi M, Casadevall A, Scharff MD. Isotype switching increases efficacy of antibody protection against Cryptococcus neoformans infection in mice. Infect Immun. 1998;66(3):1057–62.

    CAS  PubMed Central  PubMed  Google Scholar 

  88. Mukherjee J, Nussbaum G, Scharff MD, Casadevall A. Protective and nonprotective monoclonal antibodies to Cryptococcus neoformans originating from one B cell. J Exp Med. 1995;181(1):405–9.

    CAS  PubMed  Google Scholar 

  89. Nussbaum G, Yuan R, Casadevall A, Scharff MD. Immunoglobulin G3 blocking antibodies to the fungal pathogen Cryptococcus neoformans. J Exp Med. 1996;183(4):1905–9.

    CAS  PubMed  Google Scholar 

  90. Taborda CP, Rivera J, Zaragoza O, Casadevall A. More is not necessarily better: prozone-like effects in passive immunization with IgG. J Immunol. 2003;170(7):3621–30.

    CAS  PubMed  Google Scholar 

  91. Taborda CP, Casadevall A. Immunoglobulin M efficacy against Cryptococcus neoformans: mechanism, dose dependence, and prozone-like effects in passive protection experiments. J Immunol. 2001;166(3):2100–7.

    CAS  PubMed  Google Scholar 

  92. Mukherjee J, Zuckier LS, Scharff MD, Casadevall A. Therapeutic efficacy of monoclonal antibodies to Cryptococcus neoformans glucuronoxylomannan alone and in combination with amphotericin B. Antimicrob Agents Chemother. 1994;38(3):580–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  93. Mukherjee J, Feldmesser M, Scharff MD, Casadevall A. Monoclonal antibodies to Cryptococcus neoformans glucuronoxylomannan enhance fluconazole efficacy. Antimicrob Agents Chemother. 1995;39(7):1398–405.

    CAS  PubMed Central  PubMed  Google Scholar 

  94. Feldmesser M, Mukherjee J, Casadevall A. Combination of 5-flucytosine and capsule-binding monoclonal antibody in the treatment of murine Cryptococcus neoformans infections and in vitro. J Antimicrob Chemother. 1996;37(3):617–22.

    CAS  PubMed  Google Scholar 

  95. Subramaniam KS, Datta K, Marks MS, Pirofski LA. Improved survival of mice deficient in secretory immunoglobulin M following systemic infection with Cryptococcus neoformans. Infect Immun. 2010;78(1):441–52.

    CAS  PubMed Central  PubMed  Google Scholar 

  96. Ghosn EE, Russo M, Almeida SR. Nitric oxide-dependent killing of Cryptococcus neoformans by B-1-derived mononuclear phagocyte. J Leukoc Biol. 2006;80(1):36–44.

    CAS  PubMed  Google Scholar 

  97. Subramaniam KS, Datta K, Quintero E, Manix C, Marks MS, Pirofski LA. The absence of serum IgM enhances the susceptibility of mice to pulmonary challenge with Cryptococcus neoformans. J Immunol. 2010;184(10):5755–67.

    CAS  PubMed Central  PubMed  Google Scholar 

  98. Rohatgi S, Pirofski LA. Molecular characterization of the early B cell response to pulmonary Cryptococcus neoformans infection. J Immunol. 2012;189(12):5820–30.

    CAS  PubMed Central  PubMed  Google Scholar 

  99. Yuan RR, Casadevall A, Oh J, Scharff MD. T cells cooperate with passive antibody to modify Cryptococcus neoformans infection in mice. Proc Natl Acad Sci U S A. 1997;94(6):2483–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  100. Rohatgi S, Gohil S, Kuniholm MH, Schultz H, Dufaud C, Armour KL, et al. Fc gamma receptor 3A polymorphism and risk for HIV-associated cryptococcal disease. AmBio. 2013;4(5):e00573–13.

    Google Scholar 

  101. Anderson CF, Mosser DM. Cutting edge: biasing immune responses by directing antigen to macrophage Fc gamma receptors. J Immunol. 2002;168(8):3697–701.

    CAS  PubMed  Google Scholar 

  102. Marr KA, Datta K, Pirofski LA, Barnes R. Cryptococcus gattii infection in healthy hosts: a sentinel for subclinical immunodeficiency? Clin Infect Dis. 2012;54(1):153–4.

    PubMed  Google Scholar 

  103. Pirofski LA, Casadevall A. The damage-response framework of microbial pathogenesis and infectious diseases. Adv Exp Med Biol. 2008;635:135–46.

    PubMed  Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

K Datta and K Subramaniam both declare no conflicts of interest.

Human and Animal Rights and Informed Consent

All studies by K Datta and K Subramaniam involving animal and/or human subjects were performed after approval by the appropriate institutional review boards. When required, written informed consent was obtained from all participants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krishanthi S. Subramaniam.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Datta, K., Subramaniam, K.S. Host Defense Against Cryptococcal Disease: Is There a Role for B Cells and Antibody-Mediated Immunity?. Curr Fungal Infect Rep 8, 287–295 (2014). https://doi.org/10.1007/s12281-014-0208-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12281-014-0208-8

Keywords

Navigation