Skip to main content
Log in

To Sense or Die: Mechanisms of Temperature Sensing in Fungal Pathogens

  • Translational Research (R Wheeler, Section Editor)
  • Published:
Current Fungal Infection Reports Aims and scope Submit manuscript

Abstract

Temperature is a ubiquitous environmental variable that can profoundly influence the physiology of living cells as it changes over time and space. All organisms have devised sophisticated mechanisms to sense and respond to changing temperature. Complex mammals, elegant worms, or pathogens struggling for survival in their host, each have systems allowing them to persist and thrive in the face of thermal fluctuation. The ability to grow at 37 °C is essential for virulence in a mammalian host, with further increases in temperature in the form of fever being a prevalent response to pathogen invasion. An understanding of how pathogens sense temperature is imperative for appreciating mechanisms of virulence. This review will dissect the mechanisms fungal pathogens use to sense temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Klinkert B, Narberhaus F. Microbial thermosensors. Cell Mol Life Sci. 2009;66:2661–76.

    Article  CAS  PubMed  Google Scholar 

  2. McCusker JH, Clemons KV, Stevens DA, Davis RW. Saccharomyces cerevisiae virulence phenotype as determined with CD-1 mice is associated with the ability to grow at 42 °C and form pseudohyphae. Infect Immun. 1994;62:5447–55.

    CAS  PubMed Central  PubMed  Google Scholar 

  3. Bhabhra R, Miley MD, Mylonakis E, Boettner D, Fortwendel J, Panepinto JC, et al. Disruption of the Aspergillus fumigatus gene encoding nucleolar protein CgrA impairs thermotolerant growth and reduces virulence. Infect Immun. 2004;72:4731–40.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Lamoth F, Juvvadi PR, Fortwendel JR, Steinbach WJ. Heat-shock protein 90 (Hsp90) is required for conidiation and cell wall integrity in Aspergillus fumigatus. Eukaryot Cell. 2012. First study on Hsp90 function through it’s genetic repression in Aspergillus fumigatus.

  5. Odom A, Muir S, Lim E, Toffaletti DL, Perfect J, Heitman J. Calcineurin is required for virulence of Cryptococcus neoformans. EMBO J. 1997;16:2576–89. doi:10.1093/emboj/16.10.2576.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Klein BS, Tebbets B. Dimorphism and virulence in fungi. Curr Opin Microbiol. 2007;10:314–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Maresca B, Kobayashi GS. Dimorphism in Histoplasma capsulatum: a model for the study of cell differentiation in pathogenic fungi. Microbiol Rev. 1989;53:186–209.

    CAS  PubMed Central  PubMed  Google Scholar 

  8. Beyhan S, Gutierrez M, Voorhies M, Sil A. A temperature-responsive network links cell shape and virulence traits in a primary fungal pathogen. PLoS Biol. 2013;11:e1001614. Excellent study on how temperature affects the virulence of Histoplasma capsulatum.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Gow NA, Brown AJ, Odds FC. Fungal morphogenesis and host invasion. Curr Opin Microbiol. 2002;5:366–71.

    Article  CAS  PubMed  Google Scholar 

  10. Lachke SA, Lockhart SR, Daniels KJ, Soll DR. Skin facilitates Candida albicans mating. Infect Immun. 2003;71:4970–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Klose C, Surma MA, Gerl MJ, Meyenhofer F, Shevchenko A, Simons K. Flexibility of a eukaryotic lipidome – insights from yeast lipidomics. PLoS ONE. 2012;7:e35063.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Carratu L, Franceschelli S, Pardini CL, Kobayashi GS, Horvath I, Vigh L, et al. Membrane lipid perturbation modifies the set point of the temperature of heat shock response in yeast. PNAS. 1996;93:3870–5.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Gargano S, Di Lallo G, Kobayashi GS, Maresca B. A temperature-sensitive strain of Histoplasma capsulatum has an altered Δ9-fatty acid desaturase gene. Lipids. 1995;30:899–906.

    Article  CAS  PubMed  Google Scholar 

  14. Kraus PR, Boily MJ, Giles SS, Stajich JE, Allen A, Cox GM, et al. Identification of Cryptococcus neoformans temperature-regulated genes with a genomic-DNA microarray. Eukaryot Cell. 2004;3:1249–60.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Zhang S, Skalsky Y, Garfinkel DJ. MGA2 or SPT23 is required for transcription of the Δ9 fatty acid desaturase gene, OLE1, and nuclear membrane integrity in Saccharomyces cerevisiae. Genetics. 1999;151:473–83.

    CAS  PubMed Central  PubMed  Google Scholar 

  16. Schuck S, Prinz WA, Thorn KS, Voss C, Walter P. Membrane expansion alleviates endoplasmic reticulum stress independently of the unfolded protein response. J Cell Biol. 2009;187:525–36.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Surma Michal A, Klose C, Peng D, Shales M, Mrejen C, Stefanko A, et al. A lipid E-MAP identifies Ubx2 as a critical regulator of lipid saturation and lipid bilayer stress. Mol Cell. 2013;51:519–30. This work investigates the links between lipid stress and ER stress.

    Article  CAS  PubMed  Google Scholar 

  18. Wu C. Heat shock transcription factors: structure and regulation. Annu Rev Cell Dev Biol. 1995;11:441–69.

    Article  CAS  PubMed  Google Scholar 

  19. Sorger PK, Pelham HRB. Yeast heat shock factor is an essential DNA-binding protein that exhibits temperature-dependent phosphorylation. Cell. 1988;54:855–64.

    Article  CAS  PubMed  Google Scholar 

  20. Nicholls S, Leach MD, Priest CL, Brown AJ. Role of the heat shock transcription factor, Hsf1, in a major fungal pathogen that is obligately associated with warm-blooded animals. Mol Microbiol. 2009;74:844–61.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Metzger MB, Michaelis S. Analysis of quality control substrates in distinct cellular compartments reveals a unique role for Rpn4p in tolerating misfolded membrane proteins. Mol Biol Cell. 2009;20:1006–19.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Geiler-Samerotte KA, Dion MF, Budnik BA, Wang SM, Hartl DL, Drummond DA. Misfolded proteins impose a dosage-dependent fitness cost and trigger a cytosolic unfolded protein response in yeast. PNAS. 2011;108:680–5. This study uses quantitative proteomics to determine the cellular response to an unfolded protein.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Romisch K. A cure for traffic jams: small molecule chaperones in the endoplasmic reticulum. Traffic. 2004;5:815–20.

    Article  PubMed  Google Scholar 

  24. Sidrauski C, Walter P. The transmembrane kinase Ire1p is a site-specific endonuclease that initiates mRNA splicing in the unfolded protein response. Cell. 1997;90:1031–9.

    Article  CAS  PubMed  Google Scholar 

  25. Travers KJ, Patil CK, Wodicka L, Lockhart DJ, Weissman JS, Walter P. Functional and genomic analyses reveal an essential coordination between the unfolded protein response and ER-associated degradation. Cell. 2000;101:249–58.

    Article  CAS  PubMed  Google Scholar 

  26. Richie DL, Hartl L, Aimanianda V, Winters MS, Fuller KK, Miley MD, et al. A Role for the unfolded protein response (UPR) in virulence and antifungal susceptibility in Aspergillus fumigatus. PLoS Pathog. 2009;5:e1000258.

    Article  PubMed Central  PubMed  Google Scholar 

  27. Cheon SA, Jung K-W, Chen Y-L, Heitman J, Bahn Y-S, Kang HA. Unique evolution of the UPR pathway with a novel bZIP transcription factor, Hxl1, for controlling pathogenicity of Cryptococcus neoformans. PLoS Pathog. 2011;7:e1002177.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Wimalasena TT, Enjalbert B, Guillemette T, Plumridge A, Budge S, Yin Z, et al. Impact of the unfolded protein response upon genome-wide expression patterns, and the role of Hac1 in the polarized growth, of Candida albicans. Fungal Genet Biol. 2008;45:1235–47.

    Article  CAS  PubMed  Google Scholar 

  29. Miyazaki T, Nakayama H, Nagayoshi Y, Kakeya H, Kohno S. Dissection of Ire1 functions reveals stress response mechanisms uniquely evolved in Candida glabrata. PLoS Pathog. 2013;9:e1003160. Excellent study using classic genetics to study the evolution of the unfolded protein response in a fungal pathogen.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Chowdhury S, Maris C, Allain FH, Narberhaus F. Molecular basis for temperature sensing by an RNA thermometer. EMBO J. 2006;25:2487–97.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Kortmann J, Narberhaus F. Bacterial RNA thermometers: molecular zippers and switches. Nat Rev Microbiol. 2012;10:255–65.

    Article  CAS  PubMed  Google Scholar 

  32. Wan Y, Qu K, Ouyang Z, Kertesz M, Li J, Tibshirani R, et al. Genome-wide measurement of RNA folding energies. Mol Cell. 2012;48:169–81. First paper to describe RNA thermometers in a eukaryote.

    Article  PubMed Central  PubMed  Google Scholar 

  33. Aragon T, van Anken E, Pincus D, Serafimova IM, Korennykh AV, Rubio CA, et al. Messenger RNA targeting to endoplasmic reticulum stress signalling sites. Nature. 2009;457:736–40.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Leach MD, Tyc KM, Brown AJP, Klipp E. Modelling the regulation of thermal adaptation in Candida albicans, a major fungal pathogen of humans. PLoS ONE. 2012;7:e32467.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Craig EA, Jacobsen K. Mutations of the heat inducible 70 kilodalton genes of yeast confer temperature sensitive growth. Cell. 1984;38:841–9.

    Article  CAS  PubMed  Google Scholar 

  36. Taipale M, Krykbaeva I, Koeva M, Kayatekin C, Westover Kenneth D, Karras Georgios I, et al. Quantitative analysis of Hsp90-client interactions reveals principles of substrate recognition. Cell. 2012;150:987–1001. Broad survey of Hsp90 clients in a mammalian system.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Duina AA, Kalton HM, Gaber RF. Requirement for Hsp90 and a CyP-40-type cyclophilin in negative regulation of the heat shock response. J Biol Chem. 1998;273:18974–8.

    Article  CAS  PubMed  Google Scholar 

  38. Leach MD, Budge S, Walker L, Munro C, Cowen LE, Brown AJP. Hsp90 orchestrates transcriptional regulation by Hsf1 and cell wall remodelling by MAPK signalling during thermal adaptation in a pathogenic yeast. PLoS Pathog. 2012;8:e1003069. First paper providing evidence for the Hsf1-Hsp90 autoregulatory circuit.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Leach MD, Klipp E, Cowen LE, Brown AJ. Fungal Hsp90: a biological transistor that tunes cellular outputs to thermal inputs. Nat Rev Microbiol. 2012;10:693–704. Excellent review on the Hsp90-Hsf1 circuit and the implications of thermal adaptation.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

MDL is supported by a Sir Henry Wellcome Postdoctoral Fellowship (Wellcome Trust 096072), and LEC is supported by a Canada Research Chair in Microbial Genomics and Infectious Disease, by a Ministry of Research and Innovation Early Researcher Award, by Natural Sciences & Engineering Research Council Discovery Grant # 355965, and by Canadian Institutes of Health Research Grants MOP-86452 and MOP-119520.

Compliance with Ethics Guidelines

Conflict of Interest

MD Leach declares no conflict of interest.

LE Cowen declares no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leah E. Cowen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leach, M.D., Cowen, L.E. To Sense or Die: Mechanisms of Temperature Sensing in Fungal Pathogens. Curr Fungal Infect Rep 8, 185–191 (2014). https://doi.org/10.1007/s12281-014-0182-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12281-014-0182-1

Keywords

Navigation