Skip to main content

Advertisement

Log in

Fungal Biofilms: Relevance in the Setting of Human Disease

  • Published:
Current Fungal Infection Reports Aims and scope Submit manuscript

Abstract

The use of indwelling medical devices is rapidly growing and is often complicated by infections with biofilm-forming microbes that are resistant to antimicrobial agents and host defense mechanisms. Fungal biofilms have emerged as a clinical problem associated with these medical device infections, causing significant morbidity and mortality. This review discusses the recent advances in the understanding of fungal biofilms, including the role of fungal surface components in adherence, gene expression, and quorum sensing in biofilm formation. We propose novel strategies for the prevention or eradication of microbial colonization of medical prosthetic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as:• Of importance •• Of major importance

  1. Jabra-Rizk MA, Falkler WA, Meiller TF: Fungal biofilms and drug resistance. Emerg Infect Dis 2004, 10:14–19.

    CAS  PubMed  Google Scholar 

  2. Donlan RM: Biofilms: microbial life on surfaces. Emerg Infect Dis 2002, 8:881–890.

    PubMed  Google Scholar 

  3. Costerton JW, Lewandowski Z, Caldwell DE, et al.: Microbial biofilms. Annu Rev Microbiol 1995, 49:711–745.

    Article  CAS  PubMed  Google Scholar 

  4. Hall-Stoodley L, Costerton JW, Stoodley P: Bacterial biofilms: from the natural environment to infectious diseases. Nat Rev Microbiol 2004, 2:95–108.

    Article  CAS  PubMed  Google Scholar 

  5. Kuhn DM, Ghannoum MA: Candida biofilms: antifungal resistance and emerging therapeutic options. Curr Opin Investig Drugs 2004, 5:186–197.

    CAS  PubMed  Google Scholar 

  6. Martinez LR, Casadevall A: Cryptococcus neoformans cells in biofilms are less susceptible than planktonic cells to antimicrobial molecules produced by the innate immune system. Infect Immun 2006, 74:6118–6123.

    Article  CAS  PubMed  Google Scholar 

  7. Martinez LR, Casadevall A: Susceptibility of Cryptococcus neoformans biofilms to antifungal agents in vitro. Antimicrob Agents Chemother 2006, 50:1021–1033.

    Article  CAS  PubMed  Google Scholar 

  8. Mowat E, Butcher J, Lang S, et al.: Development of a simple model for studying the effects of antifungal agents on multicellular communities of Aspergillus fumigatus. J Med Microbiol 2007, 56:1205–1212.

    Article  CAS  PubMed  Google Scholar 

  9. Rasmussen TB, Givskov M: Quorum-sensing inhibitors as anti-pathogenic drugs. Int J Med Microbiol 2006, 296:149–161.

    Article  CAS  PubMed  Google Scholar 

  10. Kojic EM, Darouiche RO: Candida infections of medical devices. Clin Microbiol Rev 2004, 17:255–267.

    Article  PubMed  Google Scholar 

  11. Kumamoto CA: Candida biofilms. Curr Opin Microbiol 2002, 5:608–611.

    Article  CAS  PubMed  Google Scholar 

  12. Lopez-Ribot JL: Candida albicans biofilms: more than filamentation. Curr Biol 2005, 15:R453–R455.

    Article  CAS  PubMed  Google Scholar 

  13. Ramage G, Saville SP, Thomas DP, Lopez-Ribot JL: Candida biofilms: an update. Eukaryot Cell 2005, 4:633–638.

    Article  CAS  PubMed  Google Scholar 

  14. Walsh TJ, Schlegel R, Moody MM, et al.: Ventriculoatrial shunt infection due to Cryptococcus neoformans: an ultrastructural and quantitative microbiological study. Neurosurgery 1986, 18:373–375.

    Article  CAS  PubMed  Google Scholar 

  15. Cannizzo FT, Eraso E, Ezkurra PA, et al.: Biofilm development by clinical isolates of Malassezia pachydermatis. Med Mycol 2007, 45:357–361.

    Article  PubMed  Google Scholar 

  16. D’Antonio D, Parruti G, Pontieri E, et al.: Slime production by clinical isolates of Blastoschizomyces capitatus from patients with hematological malignancies and catheter-related fungemia. Eur J Clin Microbiol Infect Dis 2004, 23:787–789.

    Article  PubMed  Google Scholar 

  17. Davis LE, Cook G, Costerton JW: Biofilm on ventriculo-peritoneal shunt tubing as a cause of treatment failure in coccidioidal meningitis. Emerg Infect Dis 2002, 8:376–379.

    Article  PubMed  Google Scholar 

  18. Di Bonaventura G, Pompilio A, Picciani C, et al.: Biofilm formation by the emerging fungal pathogen Trichosporon asahii: development, architecture, and antifungal resistance. Antimicrob Agents Chemother 2006, 50:3269–3276.

    Article  PubMed  CAS  Google Scholar 

  19. Reynolds TB, Fink GR: Bakers’ yeast, a model for fungal biofilm formation. Science 2001, 291:878–881.

    Article  CAS  PubMed  Google Scholar 

  20. Imamura Y, Chandra J, Mukherjee PK, et al.: Fusarium and Candida albicans biofilms on soft contact lenses: model development, influence of lens type, and susceptibility to lens care solutions. Antimicrob Agents Chemother 2008, 52:171–182.

    Article  CAS  PubMed  Google Scholar 

  21. Cushion MT, Collins MS, Linke MJ: Biofilm formation by Pneumocystis spp. Eukaryot Cell 2009, 8:197–206.

    Article  CAS  PubMed  Google Scholar 

  22. Ramage G, Martinez JP, Lopez-Ribot JL: Candida biofilms on implanted biomaterials: a clinically significant problem. FEMS Yeast Res 2006, 6:979–986.

    Article  CAS  PubMed  Google Scholar 

  23. Crump JA, Collignon PJ: Intravascular catheter-associated infections. Eur J Clin Microbiol Infect Dis 2000, 19:1–8.

    Article  CAS  PubMed  Google Scholar 

  24. Wisplinghoff H, Bischoff T, Tallent SM, et al.: Nosocomial bloodstream infections in US hospitals: analysis of 24,179 cases from a prospective nationwide surveillance study. Clin Infect Dis 2004, 39:309–317.

    Article  PubMed  Google Scholar 

  25. Trampuz A, Zimmerli W: New strategies for the treatment of infections associated with prosthetic joints. Curr Opin Investig Drugs 2005, 6:185–190.

    CAS  PubMed  Google Scholar 

  26. Choi HW, Shin JH, Jung SI, et al.: Species-specific differences in the susceptibilities of biofilms formed by Candida bloodstream isolates to echinocandin antifungals. Antimicrob Agents Chemother 2007, 51:1520–1523.

    Article  CAS  PubMed  Google Scholar 

  27. Coco BJ, Bagg J, Cross LJ, Jet al.: Mixed Candida albicans and Candida glabrata populations associated with the pathogenesis of denture stomatitis. Oral Microbiol Immunol 2008, 23:377–383.

    Article  CAS  PubMed  Google Scholar 

  28. Hawser SP, Douglas LJ: Biofilm formation by Candida species on the surface of catheter materials in vitro. Infect Immun 1994, 62:915–921.

    CAS  PubMed  Google Scholar 

  29. Shin JH, Kee SJ, Shin MG, et al.: Biofilm production by isolates of Candida species recovered from nonneutropenic patients: comparison of bloodstream isolates with isolates from other sources. J Clin Microbiol 2002, 40:1244–1248.

    Article  PubMed  Google Scholar 

  30. Tumbarello M, Posteraro B, Trecarichi EM, et al.: Biofilm production by Candida species and inadequate antifungal therapy as predictors of mortality for patients with candidemia. J Clin Microbiol 2007, 45:1843–1850.

    Article  CAS  PubMed  Google Scholar 

  31. Bach MC, Tally PW, Godofsky EW: Use of cerebrospinal fluid shunts in patients having acquired immunodeficiency syndrome with cryptococcal meningitis and uncontrollable intracranial hypertension. Neurosurgery 1997, 41:1280–1282

    Article  CAS  PubMed  Google Scholar 

  32. Banerjee U, Gupta K, Venugopal P: A case of prosthetic valve endocarditis caused by Cryptococcus neoformans var. neoformans. J Med Vet Mycol 1997, 35:139–141.

    Article  CAS  PubMed  Google Scholar 

  33. Braun DK, Janssen DA, Marcus JR, Kauffman CA: Cryptococcal infection of a prosthetic dialysis fistula. Am J Kidney Dis 1994, 24:864–867.

    CAS  PubMed  Google Scholar 

  34. Martinez LR, Casadevall A: Cryptococcus neoformans biofilm formation depends on surface support and carbon source and reduces fungal cell susceptibility to heat, cold, and UV light. Appl Environ Microbiol 2007, 73:4592–4601.

    Article  CAS  PubMed  Google Scholar 

  35. Joubert LM, Wolfaardt GM, Botha A: Microbial exopolymers link predator and prey in a model yeast biofilm system. Microb Ecol 2006, 52:187–197.

    Article  PubMed  Google Scholar 

  36. Krzossok S, Birck R, Henke S, et al.: Trichosporon asahii infection of a dialysis PTFE arteriovenous graft. Clin Nephrol 2004, 62:66–68.

    CAS  PubMed  Google Scholar 

  37. Pini G, Faggi E, Donato R, Fanci R: Isolation of Trichosporon in a hematology ward. Mycoses 2005, 48:45–49.

    Article  CAS  PubMed  Google Scholar 

  38. Reddy BT, Torres HA, Kontoyiannis DP: Breast implant infection caused by Trichosporon beigelii. Scand J Infect Dis 2002, 34(2):143–144.

    Article  PubMed  Google Scholar 

  39. Langer P, Kassim RA, Macari GS, Saleh KJ: Aspergillus infection after total knee arthroplasty. Am J Orthop (Belle Mead NJ) 2003, 32:402–404.

    Google Scholar 

  40. Rosenblatt WB, Pollock A: Aspergillus flavus cultured from a saline-filled implant. Plast Reconstr Surg 1997, 99:1470–1472.

    Article  CAS  PubMed  Google Scholar 

  41. Chandra J, Kuhn DM, Mukherjee PK, et al.: Biofilm formation by the fungal pathogen Candida albicans: development, architecture, and drug resistance. J Bacteriol 2001, 183:5385–5394.

    Article  CAS  PubMed  Google Scholar 

  42. Sauer K, Camper AK, Ehrlich GD, et al.: Pseudomonas aeruginosa displays multiple phenotypes during development as a biofilm. J Bacteriol 2002, 184:1140–1154.

    Article  CAS  PubMed  Google Scholar 

  43. Stoodley P, Sauer K, Davies DG, Costerton JW: Biofilms as complex differentiated communities. Annu Rev Microbiol 2002, 56:187–209.

    Article  CAS  PubMed  Google Scholar 

  44. Loeb GI, Neihof RA: Marine conditioning films. Adv Chem 1975, 145:319.

    Article  CAS  Google Scholar 

  45. Mittelman MW: Adhesion to biomaterials. New York: Wiley-Liss, 1996.

    Google Scholar 

  46. Mundy RD, Cormack B: Expression of Candida glabrata adhesins after exposure to chemical preservatives. J Infect Dis 2009, 199:1891–1898.

    Article  CAS  PubMed  Google Scholar 

  47. Froeliger EH, Fives-Taylor P: Streptococcus parasanguis fimbria-associated adhesin fap1 is required for biofilm formation. Infect Immun 2001, 69:2512–2519.

    Article  CAS  PubMed  Google Scholar 

  48. Gavin R, Rabaan AA, Merino S, et al.: Lateral flagella of Aeromonas species are essential for epithelial cell adherence and biofilm formation. Mol Microbiol 2002, 43:383–397.

    Article  CAS  PubMed  Google Scholar 

  49. Martinez LR, Casadevall A: Specific antibody can prevent fungal biofilm formation and this effect correlates with protective efficacy. Infect Immun 2005, 73:6350–6362.

    Article  CAS  PubMed  Google Scholar 

  50. Zhao X, Oh SH, Yeater KM, Hoyer LL: Analysis of the Candida albicans Als2p and Als4p adhesins suggests the potential for compensatory function within the Als family. Microbiology 2005, 151:1619–1630.

    Article  CAS  PubMed  Google Scholar 

  51. Castano I, Pan SJ, Zupancic M, et al.: Telomere length control and transcriptional regulation of subtelomeric adhesins in Candida glabrata. Mol Microbiol 2005, 55:1246–1258.

    Article  CAS  PubMed  Google Scholar 

  52. Cowan MM, Warren TM, Fletcher M: Mixed species colonization of solid surfaces in laboratory biofilms. Biofouling 1991, 3:23–34.

    Article  Google Scholar 

  53. Yung-Hua L, Lau PCY, Lee JH, et al.: Natural genetic transformation of Streptococcus mutans growing in biofilms. J Bacteriol 2001, 183:897–908.

    Article  Google Scholar 

  54. Ehlers LJ, Bouwer EJ: RP4 plasmid transfer among species of Pseudomonas in a biofilm reactor. Water Sci Technol 1999, 7:163–171.

    Google Scholar 

  55. Davies DG, Parsek MR, Pearson JP, et al.: The involvement of cell-to-cell signals in the development of a bacterial biofilm. Science 1998, 280:295–298.

    Article  CAS  PubMed  Google Scholar 

  56. Stoodley P, Wilson S, Hall-Stoodley L, et al.: Growth and detachment of cell clusters from mature mixed-species biofilms. Appl Environ Microbiol 2001, 67:5608–5613.

    Article  CAS  PubMed  Google Scholar 

  57. El-Azizi MA, Starks SE, Khardori N: Interactions of Candida albicans with other Candida spp. and bacteria in the biofilms. J Appl Microbiol 2004, 96:1067–1073.

    Article  CAS  PubMed  Google Scholar 

  58. Mowat E, Lang S, Williams C, et al.: Phase-dependent antifungal activity against Aspergillus fumigatus developing multicellular filamentous biofilms. J Antimicrob Chemother 2008, 62:1281–1284.

    Article  CAS  PubMed  Google Scholar 

  59. Costerton JW, Lewandowski Z, DeBeer D, et al.: Biofilms, the customized microniche. J Bacteriol 1994, 176:2137–2142.

    CAS  PubMed  Google Scholar 

  60. Zheng D, Taylor GA, Gyananath G: Influence of laminar flow velocity and nutrients concentration on attachment of marine bacterioplankton. Biofouling 1994, 8:107–120.

    Article  Google Scholar 

  61. Murga R, Forster TS, Brown E, et al.: The role of biofilms in the survival of Legionella pneumophila in a model potable water system. Microbiology 2001, 147:3121–3126.

    CAS  PubMed  Google Scholar 

  62. McLaughlin-Borlace L, Stapleton F, Matheson M, Dart JK: Bacterial biofilm on contact lenses and lens storage cases in wearers with microbial keratitis. J Appl Microbiol 1998 84:827–838.

    Article  CAS  PubMed  Google Scholar 

  63. Jesaitis AJ, Franklin MJ, Berglund D, et al.: Compromised host defense on Pseudomonas aeruginosa biofilms: characterization of neutrophil and biofilm interactions. J Immunol 2003;171:4329–4339.

    CAS  PubMed  Google Scholar 

  64. Rijnaarts HH, Norde W, Bouwer EJ, et al.: Bacterial adhesion under static and dynamic conditions. Appl Environ Microbiol 1993, 59:3255–3265.

    CAS  PubMed  Google Scholar 

  65. Stoodley P, Hall-Stoodley L, Lappin-Scott HM: Detachment, surface migration, and other dynamic behavior in bacterial biofilms revealed by digital time-lapse imaging. Methods Enzymol 2001, 337:306–319.

    Article  CAS  PubMed  Google Scholar 

  66. Rice SA, Koh KS, Queck SY, et al.: Biofilm formation and sloughing in Serratia marcescens are controlled by quorum sensing and nutrient cues. J Bacteriol 2005, 187:3477–3485.

    Article  CAS  PubMed  Google Scholar 

  67. Uppuluri P, Chaturvedi AK, Srinivasan A, et al.: Dispersion as an important step in the Candida albicans biofilm developmental cycle. PLoS Pathog 2010, 6:e1000828.

    Article  PubMed  CAS  Google Scholar 

  68. Andes D, Nett J, Oschel P, et al.: Development and characterization of an in vivo central venous catheter Candida albicans biofilm model. Infect Immun 2004, 72:6023–6031.

    Article  CAS  PubMed  Google Scholar 

  69. Ramage G, Vandewalle K, Wickes BL, Lopez-Ribot JL: Characteristics of biofilm formation by Candida albicans. Rev Iberoam Micol 2001, 18:163–170.

    CAS  PubMed  Google Scholar 

  70. Kuhn DM, George T, Chandra J, et al.: Antifungal susceptibility of Candida biofilms: unique efficacy of amphotericin B lipid formulations and echinocandins. Antimicrob Agents Chemother 2002, 46:1773–1780.

    Article  CAS  PubMed  Google Scholar 

  71. Mukherjee PK, Chandra J: Candida biofilm resistance. Drug Resist Updat 2004, 7:301–309.

    Article  CAS  PubMed  Google Scholar 

  72. Nobile CJ, Andes DR, Nett JE, et al.: Critical role of Bcr1-dependent adhesins in C. albicans biofilm formation in vitro and in vivo. PLoS Pathog 2006, 2:e63.

    Article  PubMed  CAS  Google Scholar 

  73. Al-Fattani MA, Douglas LJ: Biofilm matrix of Candida albicans and Candida tropicalis: chemical composition and role in drug resistance. J Med Microbiol 2006, 55:999–1008.

    Article  CAS  PubMed  Google Scholar 

  74. •• Loussert C, Schmitt C, Prevost MC, et al.: In vivo biofilm composition of Aspergillus fumigatus. Cell Microbiol 2010, 12(3):405–410. The in vivo composition of the mycelial extracellular matrix of Aspergillus fumigatus during host invasion is reported here for the first time.

    Article  CAS  PubMed  Google Scholar 

  75. Richard ML, Nobile CJ, Bruno VM, Mitchell AP: Candida albicans biofilm-defective mutants. Eukaryot Cell 2005, 4:1493–1502.

    Article  CAS  PubMed  Google Scholar 

  76. Garcia-Sanchez S, Aubert S, Iraqui I, et al.: Candida albicans biofilms: a developmental state associated with specific and stable gene expression patterns. Eukaryot Cell 2004, 3:536–545.

    Article  CAS  PubMed  Google Scholar 

  77. Murillo LA, Newport G, Lan CY, et al.: Genome-wide transcription profiling of the early phase of biofilm formation by Candida albicans. Eukaryot Cell 2005, 4:1562–1573.

    Article  CAS  PubMed  Google Scholar 

  78. Ramage G, VandeWalle K, Lopez-Ribot JL, Wickes BL: The filamentation pathway controlled by the Efg1 regulator protein is required for normal biofilm formation and development in Candida albicans. FEMS Microbiol Lett 2002, 214:95–100.

    Article  CAS  PubMed  Google Scholar 

  79. Nobile CJ, Mitchell AP: Genetics and genomics of Candida albicans biofilm formation. Cell Microbiol 2006, 8:1382–1391.

    Article  CAS  PubMed  Google Scholar 

  80. Lewis RE, Lo HJ, Raad, II, Kontoyiannis DP: Lack of catheter infection by the efg1/efg1 cph1/cph1 double-null mutant, a Candida albicans strain that is defective in filamentous growth. Antimicrob Agents Chemother 2002, 46:1153–1155.

    Article  CAS  PubMed  Google Scholar 

  81. Schweizer A, Rupp S, Taylor BN, et al.: The TEA/ATTS transcription factor CaTec1p regulates hyphal development and virulence in Candida albicans. Mol Microbiol 2000, 38:435–445.

    Article  CAS  PubMed  Google Scholar 

  82. Klotz SA, Gaur NK, De Armond R, et al.: Candida albicans Als proteins mediate aggregation with bacteria and yeasts. Med Mycol 2007, 45:363–370.

    Article  CAS  PubMed  Google Scholar 

  83. Green CB, Cheng G, Chandra J, et al.: RT-PCR detection of Candida albicans ALS gene expression in the reconstituted human epithelium (RHE) model of oral candidiasis and in model biofilms. Microbiology 2004, 150:267–275.

    Article  CAS  PubMed  Google Scholar 

  84. Nobile CJ, Mitchell AP: Regulation of cell-surface genes and biofilm formation by the C. albicans transcription factor Bcr1p. Curr Biol 2005, 15:1150–1155.

    Article  CAS  PubMed  Google Scholar 

  85. Ding C, Butler G: Development of a gene knockout system in Candida parapsilosis reveals a conserved role for BCR1 in biofilm formation. Eukaryot Cell 2007, 6:1310–1319.

    Article  CAS  PubMed  Google Scholar 

  86. Zhao X, Daniels KJ, Oh SH, et al.: Candida albicans Als3p is required for wild-type biofilm formation on silicone elastomer surfaces. Microbiology 2006, 152:2287–2299.

    Article  CAS  PubMed  Google Scholar 

  87. Nobile CJ, Nett JE, Andes DR, Mitchell AP: Function of Candida albicans adhesin Hwp1 in biofilm formation. Eukaryot Cell 2006, 5:1604–1610.

    Article  CAS  PubMed  Google Scholar 

  88. Hoyer LL, Payne TL, Bell M, et al.: Candida albicans ALS3 and insights into the nature of the ALS gene family. Curr Genet 1998, 33:451–459.

    Article  CAS  PubMed  Google Scholar 

  89. Staab JF, Ferrer CA, Sundstrom P: Developmental expression of a tandemly repeated, proline-and glutamine-rich amino acid motif on hyphal surfaces on Candida albicans. J Biol Chem 1996, 271:6298–6305.

    Article  CAS  PubMed  Google Scholar 

  90. Seneviratne CJ, Wang Y, Jin L, et al.: Proteomics of drug resistance in Candida glabrata biofilms. Proteomics 2010, 10:1444–1454.

    Article  CAS  PubMed  Google Scholar 

  91. Domergue R, Castano I, De Las Penas A, et al.: Nicotinic acid limitation regulates silencing of Candida adhesins during UTI. Science 2005, 308:866–870.

    Article  CAS  PubMed  Google Scholar 

  92. Iraqui I, Garcia-Sanchez S, Aubert S, et al.: The Yak1p kinase controls expression of adhesins and biofilm formation in Candida glabrata in a Sir4p-dependent pathway. Mol Microbiol 2005, 55:1259–1271.

    Article  CAS  PubMed  Google Scholar 

  93. de Groot PW, Kraneveld EA, Yin QY, et al.: The cell wall of the human pathogen Candida glabrata: differential incorporation of novel adhesin-like wall proteins. Eukaryot Cell 2008, 7:1951–1964.

    Article  PubMed  Google Scholar 

  94. Martinez LR, Ibom DC, Casadevall A, Fries BC: Characterization of phenotypic switching in Cryptococcus neoformans biofilms. Mycopathologia 2008, 166:175–180.

    Article  PubMed  Google Scholar 

  95. Ravi S, Pierce C, Witt C, Wormley FL Jr: Biofilm formation by Cryptococcus neoformans under distinct environmental conditions. Mycopathologia 2009, 167:307–314.

    Article  PubMed  Google Scholar 

  96. Nobile CJ, Nett JE, Hernday AD, et al.: Biofilm matrix regulation by Candida albicans Zap1. PLoS Biol 2009, 7:e1000133.

    Article  PubMed  CAS  Google Scholar 

  97. Hornby JM, Jensen EC, Lisec AD, et al.: Quorum sensing in the dimorphic fungus Candida albicans is mediated by farnesol. Appl Environ Microbiol 2001, 67:2982–2992.

    Article  CAS  PubMed  Google Scholar 

  98. Cao YY, Cao YB, Xu Z, et al.: cDNA microarray analysis of differential gene expression in Candida albicans biofilm exposed to farnesol. Antimicrob Agents Chemother 2005, 49:584–589.

    Article  CAS  PubMed  Google Scholar 

  99. Enjalbert B, Whiteway M: Release from quorum-sensing molecules triggers hyphal formation during Candida albicans resumption of growth. Eukaryot Cell 2005, 4:1203–1210.

    Article  CAS  PubMed  Google Scholar 

  100. Kruppa M, Krom BP, Chauhan N, et al.: The two-component signal transduction protein Chk1p regulates quorum sensing in Candida albicans. Eukaryot Cell 2004, 3:1062–1065.

    Article  CAS  PubMed  Google Scholar 

  101. Blankenship JR, Mitchell AP: How to build a biofilm: a fungal perspective. Curr Opin Microbiol 2006, 9:588–594.

    Article  CAS  PubMed  Google Scholar 

  102. Granger BL, Flenniken ML, Davis DA, et al.: Yeast wall protein 1 of Candida albicans. Microbiology 2005, 151:1631–1644.

    Article  CAS  PubMed  Google Scholar 

  103. Lee H, Chang YC, Nardone G, Kwon-Chung KJ: TUP1 disruption in Cryptococcus neoformans uncovers a peptide-mediated density-dependent growth phenomenon that mimics quorum sensing. Mol Microbiol 2007, 64:591–601.

    Article  CAS  PubMed  Google Scholar 

  104. Lepak A, Nett J, Lincoln L, et al.: Time course of microbiologic outcome and gene expression in Candida albicans during and following in vitro and in vivo exposure to fluconazole. Antimicrob Agents Chemother 2006, 50:1311–1319.

    Article  CAS  PubMed  Google Scholar 

  105. Mukherjee PK, Zhou G, Munyon R, Ghannoum MA: Candida biofilm: a well-designed protected environment. Med Mycol 2005, 43:191–208.

    Article  CAS  PubMed  Google Scholar 

  106. • Weindl G, Naglik JR, Kaesler S, et al.: Human epithelial cells establish direct antifungal defense through TLR4-mediated signaling. J Clin Invest 2007, 117:3664–3672. The authors demonstrate that human epithelial TLR4 directly protected the oral mucosa from fungal infection via a process mediated by PMNs. This is one of the few reports on fungal biofilms focusing on host-pathogen interactions.

    CAS  PubMed  Google Scholar 

  107. Wang M, Mukherjee PK, Chandra J, et al.: Characterization and partial purification of Candida albicans Secretory IL-12 Inhibitory Factor. BMC Microbiol 2008, 8:31.

    Article  PubMed  CAS  Google Scholar 

  108. Leid JG, Willson CJ, Shirtliff ME, et al.: The exopolysaccharide alginate protects Pseudomonas aeruginosa biofilm bacteria from IFN-γ-mediated macrophage killing. J Immunol 2005, 175:7512–7518.

    CAS  PubMed  Google Scholar 

  109. Leid JG, Shirtliff ME, Costerton JW, Stoodley AP: Human leukocytes adhere to, penetrate, and respond to Staphylococcus aureus biofilms. Infect Immun 2002, 70:6339–6345.

    Article  CAS  PubMed  Google Scholar 

  110. Martinez LR, Christaki E, Casadevall A: Specific antibody to Cryptococcus neoformans glucurunoxylomannan antagonizes antifungal drug action against cryptococcal biofilms in vitro. J Infect Dis 2006, 194:261–266.

    Article  CAS  PubMed  Google Scholar 

  111. Alvarez M, Saylor C, Casadevall A: Antibody action after phagocytosis promotes Cryptococcus neoformans and Cryptococcus gattii macrophage exocytosis with biofilm-like microcolony formation. Cell Microbiol 2008, 10:1622–1633.

    Article  CAS  PubMed  Google Scholar 

  112. Chandra J, Mukherjee PK, Leidich SD, et al.: Antifungal resistance of candidal biofilms formed on denture acrylic in vitro. J Dent Res 2001, 80:903–908.

    Article  CAS  PubMed  Google Scholar 

  113. Jain N, Kohli R, Cook E, et al.: Biofilm formation by and antifungal susceptibility of Candida isolates from urine. Appl Environ Microbiol 2007, 73:1697–1703.

    Article  CAS  PubMed  Google Scholar 

  114. Mah TC, O’Toole GA: Mechanisms of biofilm resistance to antimicrobial agents. Trends Microbiol 2001, 9:34–39.

    Article  CAS  PubMed  Google Scholar 

  115. Baillie GS, Douglas LJ: Matrix polymers of Candida biofilms and their possible role in biofilm resistance to antifungal agents. J Antimicrob Chemother 2000, 46:397–403.

    Article  CAS  PubMed  Google Scholar 

  116. Baillie GS, Douglas LJ: Effect of growth rate on resistance of Candida albicans biofilms to antifungal agents. Antimicrob Agents Chemother 1998, 42:1900–1905.

    CAS  PubMed  Google Scholar 

  117. Beauvais A, Schmidt C, Guadagnini S, et al.: An extracellular matrix glues together the aerial-grown hyphae of Aspergillus fumigatus. Cell Microbiol 2007, 9:1588–1600.

    Article  CAS  PubMed  Google Scholar 

  118. Seidler MJ, Salvenmoser S, Muller FM: Aspergillus fumigatus forms biofilms with reduced antifungal drug susceptibility on bronchial epithelial cells. Antimicrob Agents Chemother 2008, 52:4130–4136.

    Article  CAS  PubMed  Google Scholar 

  119. Villena GK, Gutierrez-Correa M: Morphological patterns of Aspergillus niger biofilms and pellets related to lignocellulolytic enzyme productivities. Lett Appl Microbiol 2007, 45:231–237.

    Article  CAS  PubMed  Google Scholar 

  120. Khot PD, Suci PA, Miller RL, et al.: A small subpopulation of blastospores in candida albicans biofilms exhibit resistance to amphotericin B associated with differential regulation of ergosterol and beta-1,6-glucan pathway genes. Antimicrob Agents Chemother 2006, 50:3708–3716.

    Article  CAS  PubMed  Google Scholar 

  121. LaFleur MD, Kumamoto CA, Lewis K: Candida albicans biofilms produce antifungal-tolerant persister cells. Antimicrob Agents Chemother 2006, 50:3839–3846.

    Article  CAS  PubMed  Google Scholar 

  122. Al-Dhaheri RS, Douglas LJ: Absence of amphotericin B-tolerant persister cells in biofilms of some Candida species. Antimicrob Agents Chemother 2008, 52:1884–1887.

    Article  CAS  PubMed  Google Scholar 

  123. Perumal P, Mekala S, Chaffin WL: Role for cell density in antifungal drug resistance in Candida albicans biofilms. Antimicrob Agents Chemother 2007, 51:2454–2463.

    Article  CAS  PubMed  Google Scholar 

  124. Martinez LR, Bryan RA, Apostolidis C, et al.: Antibody-guided alpha radiation effectively damages fungal biofilms. Antimicrob Agents Chemother 2006, 50:2132–2136.

    Article  CAS  PubMed  Google Scholar 

  125. •• Martinez LR, Mihu MR, Tar M, et al.: Demonstration of antibiofilm and antifungal efficacy of chitosan against candidal biofilms, using an in vivo central venous catheter model. J Infect Dis 2010, 201:1436–1440. The authors used an in vivo central venous catheter model to show that chitosan can effectively prevent biofilm formation.

    Article  CAS  PubMed  Google Scholar 

  126. Martinez LR, Mihu MR, Han G, et al.: The use of chitosan to damage Cryptococcus neoformans biofilms. Biomaterials 2010, 31:669–679.

    Article  CAS  PubMed  Google Scholar 

  127. Rabea EI, Badawy ME, Stevens CV, et al.: Chitosan as antimicrobial agent: applications and mode of action. Biomacromolecules 2003, 4:1457–1465.

    Article  CAS  PubMed  Google Scholar 

  128. Nosanchuk JD, Casadevall A: Cellular charge of Cryptococcus neoformans: contributions from the capsular polysaccharide, melanin, and monoclonal antibody binding. Infect Immun 1997, 65:1836–1841.

    CAS  PubMed  Google Scholar 

  129. Kotze AF, Luessen HL, de Boer AG, et al.: Chitosan for enhanced intestinal permeability: prospects for derivatives soluble in neutral and basic environments. Eur J Pharm Sci 1999, 7:145–151.

    Article  CAS  PubMed  Google Scholar 

  130. Mukherjee PK, Long L, Kim HG, Ghannoum MA: Amphotericin B lipid complex is efficacious in the treatment of Candida albicans biofilms using a model of catheter-associated Candida biofilms. Int J Antimicrob Agents 2009, 33:149–153.

    Article  CAS  PubMed  Google Scholar 

  131. Tobudic S, Kratzer C, Lassnigg A, et al.: In vitro activity of antifungal combinations against Candida albicans biofilms. J Antimicrob Chemother 2010, 65:271–274.

    Article  CAS  PubMed  Google Scholar 

Download references

Disclosure

No potential conflicts of interest relevant to this article were reported.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Luis R. Martinez or Bettina C. Fries.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martinez, L.R., Fries, B.C. Fungal Biofilms: Relevance in the Setting of Human Disease. Curr Fungal Infect Rep 4, 266–275 (2010). https://doi.org/10.1007/s12281-010-0035-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12281-010-0035-5

Keywords

Navigation