Skip to main content

Advertisement

Log in

Interactions between pathogenic fungi and human epithelial and endothelial surfaces

  • Published:
Current Fungal Infection Reports Aims and scope Submit manuscript

Abstract

The adhesion of fungi to host cells is an important area of study. Knowledge of the molecular mechanisms involved in these interactions can be used to devise methods to interfere with them. Similar to many pathogens, loss of fungal adhesion to epithelial or endothelial cell surfaces results in a marked decrease in virulence when evaluated in both in vivo and in vitro disease models. This review emphasizes literature from the past year and focuses on the molecular mechanisms by which fungi in the genera Candida, Cryptococcus, Sporothrix, Pneumocystis, and Aspergillus adhere to epithelial and/or endothelial host surfaces. The methodologies used to conduct these studies are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Ofek I, Hasty DL, Doyle RJ: Bacterial Adhesion to Animal Cells and Tissues. Washington, DC: ASM Press; 2003.

    Google Scholar 

  2. Klein BS: Molecular basis of pathogenicity in Blastomyces dermatitidis: the importance of adhesion. Curr Opin Microbiol 2000, 3:339–343.

    Article  PubMed  CAS  Google Scholar 

  3. Ramage G, Martinez JP, Lopez-Ribot JL: Candida biofilms on implanted biomaterials: a clinically significant problem. FEMS Yeast Res 2006, 6:979–986.

    Article  PubMed  CAS  Google Scholar 

  4. Blankenship JR, Mitchell AP: How to build a biofilm: a fungal perspective. Curr Opin Microbiol 2006, 9:588–594.

    Article  PubMed  CAS  Google Scholar 

  5. Sundstrom P: Adhesion in Candida spp. Cell Microbiol 2002, 4:461–469.

    Article  PubMed  CAS  Google Scholar 

  6. Staab JF, Bahn YS, Tai CH, et al.: Expression of transglutaminase substrate activity on Candida albicans germ tubes through a coiled, disulfide-bonded N-terminal domain of Hwp1 requires C-terminal glycosylphosphatidylinositol modification. J Biol Chem 2004, 279:40737–40747.

    Article  PubMed  CAS  Google Scholar 

  7. Sundstrom P, Huang G, Ponniah G, et al.: Interactions between Candida albicans Hwp1 and human oral keratinocytes [abstract S6:2]. Presented at the 9th American Society for Microbiology Conference on Candida and Candidiasis. Jersey City, NJ, USA; March 24–28, 2008.

  8. Ponniah G, Rollenhagen C, Bhan, YS, et al.: State of differentiation defines buccal epithelial cell affinity for cross-linking to Candida albicans Hwp1. J Oral Pathol Med 2007, 36:456–467.

    PubMed  CAS  Google Scholar 

  9. Kim S, Wolyniak MJ, Staab JF, et al.: A 368-base-pair cisacting HWP1 promoter region, HCR, of Candida albicans confers hypha-specific gene regulation and binds architectural transcription factors Nhp6 and Gcf1p. Eukaryot Cell 2007, 6:693–709.

    Article  PubMed  CAS  Google Scholar 

  10. Wolyniak MJ, Sundstrom P: Role of actin cytoskeletal dynamics in activation of the cyclic AMP pathway and HWP1 gene expression in Candida albicans. Eukaryot Cell 2007, 6:1824–1840.

    Article  PubMed  CAS  Google Scholar 

  11. Li F, Svarovsky MJ, Karlsson AJ, et al.: Eap1p, an adhesin that mediates Candida albicans biofilm formation in vitro and in vivo. Eukaryot Cell 2007, 6:931–939.

    Article  PubMed  CAS  Google Scholar 

  12. Li F, Palecek SP: Distinct domains of the Candida albicans adhesin Eap1p mediate cell-cell and cell-substrate interactions. Microbiology 2008, 154:1193–1203.

    Article  PubMed  CAS  Google Scholar 

  13. Linder T, Gustafsson CM: Molecular phylogenetics of ascomycotal adhesins: a novel family of putative cell-surface adhesive proteins in fission yeasts. Fungal Genet Biol 2008, 45:485–497.

    Article  PubMed  CAS  Google Scholar 

  14. Hoyer LL, Green CB, Oh SH, et al.: Discovering the secrets of the Candida albicans agglutinin-like sequence (ALS) gene family: a sticky pursuit. Med Mycol 2008, 46:1–15.

    Article  PubMed  CAS  Google Scholar 

  15. Kaur R, Domergue R, Zupancic ML, et al.: A yeast by any other name: Candida glabrata and its interaction with the host. Curr Opin Microbiol 2005, 8:378–384.

    Article  PubMed  CAS  Google Scholar 

  16. Dranginis AM, Rauceo JM, Coronado JE, et al.: A biochemical guide to yeast adhesins: glycoproteins for social and antisocial occasions. Microbiol Mol Biol Rev 2007, 71:282–294.

    Article  PubMed  CAS  Google Scholar 

  17. Zhao X, Oh S-H, Hoyer LL: Unequal contribution of ALS9 alleles to adhesion between Candida albicans and human vascular endothelial cells. Microbiology 2007, 153:2342–2350.

    Article  PubMed  CAS  Google Scholar 

  18. Zhao X, Oh S-H, Hoyer LL: Deletion of ALS5, ALS6 or ALS7 increases adhesion of Candida albicans to human vascular endothelial and buccal epithelial cells. Med Mycol 2007, 45:429–434.

    Article  PubMed  CAS  Google Scholar 

  19. Coleman DA, Oh S, Zhao X, et al.: Dynamics of Als protein localization on the Candida albicans cell surface [abstract B62]. Presented at the 9th American Society for Microbiology Conference on Candida and Candidiasis. Jersey City, NJ, USA; March 24–28, 2008.

  20. Zhao X, Oh SH, Cheng G, et al.: ALS3 and ALS8 represent a single locus that encodes a Candida albicans adhesin: functional comparisons between Als3p and Als1p. Microbiology 2004, 150:2415–2428.

    Article  PubMed  CAS  Google Scholar 

  21. Zhao X, Daniels KJ, Oh SH, et al.: Candida albicans Als3p is required for wild-type biofilm formation on silicone elastomer surfaces. Microbiology 2006, 152:2287–2299.

    Article  PubMed  CAS  Google Scholar 

  22. Brand A, MacCallum DM, Brown AJ, et al.: Ectopic expression of URA3 can influence the virulence phenotypes and proteome of Candida albicans but can be overcome by targeted reintegration of URA3 at the RPS10 locus. Eukaryot Cell 2004, 3:900–909.

    Article  PubMed  CAS  Google Scholar 

  23. Nobile CJ, Andes DR, Nett JE, et al.: Critical role of Bcr1-dependent adhesins in C. albicans biofilm formation in vitro and in vivo. PLoS Pathog 2006, 2:e63.

    Article  PubMed  CAS  Google Scholar 

  24. Phan QT, Myers CL, Fu Y, et al.: Als3 is a Candida albicans invasin that binds to cadherins and induces endocytosis by host cells. PLoS Biol 2007, 5:e64.

    Article  PubMed  CAS  Google Scholar 

  25. Phan QT, Fratti RA, Prasadarao NV, et al.: N-cadherin mediates endocytosis of Candida albicans by endothelial cells. J Biol Chem 2005, 280:10455–10461.

    Article  PubMed  CAS  Google Scholar 

  26. Zhu W, Boontheung P, Baudier J, et al.: AHNAK is a host cell receptor for Candida albicans [abstract B119]. Presented at the 9th American Society for Microbiology Conference on Candida and Candidiasis. Jersey City, NJ, USA; March 24–28, 2008.

  27. Couto de Almeida RS, Brunke S, Wachtler B, et al.: The hyphal associated adhesin and invasin Als3p of Candida albicans mediates iron acquisition from host ferritin [abstract S6:3]. Presented at the 9th American Society for Microbiology Conference on Candida and Candidiasis. Jersey City, NJ, USA; March 24–28, 2008.

  28. Laforce-Nesbitt SS, Sullivan MA, Hoyer LL, et al.: Inhibition of Candida albicans adhesion by recombinant human antibody single-chain variable fragment specific for Als3p [abstract C264]. Presented at the 9th American Society for Microbiology Conference on Candida and Candidiasis. Jersey City, NJ, USA; March 24–28, 2008.

  29. Otoo HN, Lee KG, Qui W, et al.: Candida albicans Als adhesins have conserved amyloid-forming sequences. Eukaryot Cell 2008, 5:776–782.

    Article  CAS  Google Scholar 

  30. Zupancic M, Frieman M, Smith D, et al.: Glycan microarray analysis of Candida glabrata adhesin ligand specificity. Mol Microbiol 2008, 68:547–559.

    Article  PubMed  CAS  Google Scholar 

  31. Kraneveld EA, Deng DM, Dekker H, et al.: Identification of a novel family of adhesin-like proteins in the cell wall of Candida glabrata [abstract S7:1]. Presented at the 9th American Society for Microbiology Conference on Candida and Candidiasis. Jersey City, NJ, USA; March 24–28, 2008.

  32. Kaur R, Ma B, Cormack B: A family of glycosylphosphatidylinositol-linked aspartyl proteases is required for virulence of Candida glabrata. Proc Natl Acad Sci U S A 2007, 104:7628–7633.

    Article  PubMed  CAS  Google Scholar 

  33. d’Enfert C, Goyard S, Rodriguez-Arnaveilhe S, et al.: Candida DB: a genome database for Candida albicans pathogenomics. Nucleic Acids Res 2005, 33:D353–D357.

    Article  PubMed  CAS  Google Scholar 

  34. Bates S, de la Rosa JM, McCallum DM, et al.: Candida albicans Iff11, a secreted protein required for cell wall structure and virulence. Infect Immun 2007, 75:2922–2928.

    Article  PubMed  CAS  Google Scholar 

  35. Fu Y, Luo G, Spellberg BJ, et al.: Gene overexpression/suppression analysis of candidate virulence factors of Candida albicans. Eukaryot Cell 2008, 7:483–492.

    Article  PubMed  CAS  Google Scholar 

  36. Glee PM, Cutler JE, Benson EE, et al.: Inhibition of hydrophobic protein-mediated Candida albicans attachment to endothelial cells during physiologic shear flow. Infect Immun 2001, 69:2815–2820.

    Article  PubMed  CAS  Google Scholar 

  37. Grubb SE, Murdoch C, Saville SP, et al.: Adhesion of Candida albicans to endothelial cells under conditions of flow [abstract C84]. Presented at the 9th American Society for Microbiology Conference on Candida and Candidiasis. Jersey City, NJ, USA; March 24–28, 2008.

  38. Li L, Zaragoza O, Casadevall A, et al.: Characterization of a flocculation-like phenotype in Cryptococcus neoformans and its effects on pathogenesis. Cell Microbiol 2006, 8:1730–1739.

    Article  PubMed  CAS  Google Scholar 

  39. Jong A, Wu CH, Jiang S, et al.: HIV-1 gp41 ectodomain enhances Cryptococcus neoformans binding to HBMEC. Biochem Biophys Res Commun 2007, 356:899–905.

    Article  PubMed  CAS  Google Scholar 

  40. Jong A, Wu CH, Schackleford GM, et al.: Involvement of human CD44 during Cryptococcus neoformans infection of brain microvascular endothelial cells. Cell Microbiol 2008, 10:1313–1326.

    Article  PubMed  CAS  Google Scholar 

  41. Jong A, Wu CH, Chen HM, et al.: Identification and characterization of CPS1 as a hyaluronic acid synthase contributing to the pathogenesis of Cryptococcus neoformans infection. Eukaryot Cell 2007, 6:1486–1496.

    Article  PubMed  CAS  Google Scholar 

  42. Aird WC: Phenotypic heterogeneity of the endothelium: II. Representative vascular beds. Circ Res 2007, 100:174–190.

    Article  PubMed  CAS  Google Scholar 

  43. Figueiredo CC, Deccache PMS, Lopes-Bezerra LM, et al.: TGF-beta1 induces transendothelial migration of the pathogenic fungus Sporothrix schenckii by a paracellular route involving extracellular matrix proteins. Microbiology 2007, 153:2910–2921.

    Article  PubMed  CAS  Google Scholar 

  44. Schubach A, Barros MB, Wanke B.: Epidemic sporotrichosis. Curr Opin Infect Dis 2008 21:129–133.

    Article  PubMed  Google Scholar 

  45. Allen JB, Wong HL, Guyre PM, et al.: Association of circulating receptor Fc gamma RIII-positive monocytes in AIDS patients with elevated levels of transforming growth factor-beta. J Clin Invest 1991, 87:1773–1779.

    Article  PubMed  CAS  Google Scholar 

  46. Kottom TJ, Kennedy CC, Limper AH: Pneumocystis PCINT1, a molecule with integrin-like features that mediates organism adhesion to fibronectin. Mol Microbiol 2008, 67:747–761.

    PubMed  CAS  Google Scholar 

  47. Pottratz ST: Pneumocystis carinii interactions with respiratory epithelium. Semin Respir Infect 1998, 13:323–329.

    PubMed  CAS  Google Scholar 

  48. Lopes Bezerra LM, Filler SG: Interactions of Aspergillus fumigatus with endothelial cells: internalization, injury, and stimulation of tissue factor activity. Blood 2004, 103:2143–2149.

    Article  PubMed  CAS  Google Scholar 

  49. Kamai Y, Chiang LY, Lopes Bezerra LM, et al.: Interactions of Aspergillus fumigatus with vascular endothelial cells. Med Mycol 2006, 44:S115–S117.

    Article  PubMed  Google Scholar 

  50. Hope WW, Kruhlak MJ, Lyman CA, et al.: Pathogenesis of Aspergillus fumigatus and the kinetics of galactomannan in an in vitro model of early invasive pulmonary aspergillosis: implications for antifungal therapy. J Infect Dis 2007, 195:455–466.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lois L. Hoyer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Coleman, D.A., Hoyer, L.L. Interactions between pathogenic fungi and human epithelial and endothelial surfaces. Curr Fungal Infect Rep 2, 165–171 (2008). https://doi.org/10.1007/s12281-008-0024-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12281-008-0024-0

Keywords

Navigation