Skip to main content
Log in

Transcriptional control of sexual development in Cryptococcus neoformans

  • Minireview
  • Published:
Journal of Microbiology Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

An Erratum to this article was published on 30 September 2016

Abstract

Developmental processes are essential for the normal life cycles of many pathogenic fungi, and they can facilitate survival in challenging environments, including the human host. Sexual development of the human fungal pathogen Cryptococcus neoformans not only produces infectious particles (spores) but has also enabled the evolution of new disease-related traits such as drug resistance. Transcription factor networks are essential to the development and pathogenesis of C. neoformans, and a variety of sequence-specific DNA-binding proteins control both key developmental transitions and virulence by regulating the expression of their target genes. In this review we discuss the roles of known transcription factors that harbor important connections to both development and virulence. Recent studies of these transcription factors have identified a common theme in which metabolic, stress, and other responses that are required for sexual development appear to have been co-opted for survival in the human host, thus facilitating pathogenesis. Future work elucidating the connection between development and pathogenesis will provide vital insights into the evolution of complex traits in eukaryotes as well as mechanisms that may be used to combat fungal pathogens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Billmyre, R.B., Croll, D., Li, W., Mieczkowski, P., Carter, D.A., Cuomo, C.A., Kronstad, J.W., and Heitman, J. 2014. Highly recombinant VGII Cryptococcus gattii population develops clonal outbreak clusters through both sexual macroevolution and asexual microevolution. mBio 5, E01494–14.

    Article  Google Scholar 

  • Botts, M.R., Giles, S.S., Gates, M.A., Kozel, T.R., and Hull, C.M. 2009. Isolation and characterization of Cryptococcus neoformans spores reveal a critical role for capsule biosynthesis genes in spore biogenesis. Eukaryot. Cell 8, 595–605.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Botts, M.R., Huang, M., Borchardt, R.K., and Hull, C.M. 2014. Developmental cell fate and virulence are linked to trehalose homeostasis in Cryptococcus neoformans. Eukaryot. Cell 13, 1158–1168.

    Article  PubMed  PubMed Central  Google Scholar 

  • Brefort, T., Doehlemann, G., Mendoza-Mendoza, A., Reissmann, S., Djamei, A., and Kahmann, R. 2009. Ustilago maydis as a pathogen. Annu. Rev. Phytopathol. 47, 423–445.

    Article  CAS  PubMed  Google Scholar 

  • Camps, S.M.T., Rijs, A.J.M.M., Klaassen, C.H.W., Meis, J.F., O’Gorman, C.M., Dyer, P.S., Melchers, W.J.G., and Verweij, P.E. 2012. Molecular epidemiology of Aspergillus fumigatus isolates harboring the TR34/L98H azole resistance mechanism. J. Clin. Microbiol. 50, 2674–2680.

    Article  PubMed  PubMed Central  Google Scholar 

  • Casselton, L.A. and Olesnicky, N.S. 1998. Molecular genetics of mating recognition in basidiomycete fungi. Microbiol. Mol. Biol. Rev. 62, 55–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chung, S., Karos, M., Chang, Y.C., Lukszo, J., Wickes, B.L., and Kwon-Chung, K.J. 2002. Molecular analysis of CPRα, a MATα-specific pheromone receptor gene of Cryptococcus neoformans. Eukaryot. Cell 1, 432–439.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clark, T.A. and Anderson, J.B. 2004. Dikaryons of the basidiomycete fungus Schizophyllum commune: evolution in long-term culture. Genetics 167, 1663–1675.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • D’Souza, C.A., Kronstad, J.W., Taylor, G., Warren, R., Yuen, M., Hu, G., Jung, W.H., Sham, A., Kidd, S.E., Tangen, K., et al. 2010. Genome variation in Cryptococcus gattii, an emerging pathogen of immunocompetent hosts. mBio 2, E00342–10.

    Google Scholar 

  • Denning, D.W. 2001. Chronic forms of pulmonary aspergillosis. Clin. Microbiol. Infect. 7 Suppl 2, 25–31.

    Article  PubMed  Google Scholar 

  • Dolan, J.W., Kirkman, C., and Fields, S. 1989. The yeast STE12 protein binds to the DNA sequence mediating pheromone induction. Proc. Natl. Acad. Sci. USA 86, 5703–5707.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Edmond, M.B., Wallace, S.E., McClish, D.K., Pfaller, M.A., Jones, R.N., and Wenzel, R.P. 1999. Nosocomial bloodstream infections in United States hospitals: a three-year analysis. Clin. Infect. Dis. 29, 239–244.

    Article  CAS  PubMed  Google Scholar 

  • Ekena, J.L., Stanton, B.C., Schiebe-Owens, J.A., and Hull, C.M. 2008. Sexual development in Cryptococcus neoformans requires CLP1, a target of the homeodomain transcription factors Sxi1α and Sxi2a. Eukaryot. Cell 7, 49–57.

    Article  CAS  PubMed  Google Scholar 

  • Erke, K.H. 1976. Light microscopy of basidia, basidiospores, and nuclei in spores and hyphae of Filobasidiella neoformans (Cryptococcus neoformans). J. Bacteriol. 128, 445–455.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Estella, C., Voutev, R., and Mann, R.S. 2012. Chapter 7 - A dynamic network of morphogens and transcription factors patterns the fly leg, pp. 173–198. In Plaza, S. and Payre, F. (eds.), Current Topics in Developmental Biology: Transcriptional Switches During Development, Volume 98. Academic Press.

    Chapter  Google Scholar 

  • Feretzaki, M. and Heitman, J. 2013. Genetic circuits that govern bisexual and unisexual reproduction in Cryptococcus neoformans. PLoS Genet. 9, e1003688.

    Article  Google Scholar 

  • Fraser, J.A., Diezmann, S., Subaran, R.L., Allen, A., Lengeler, K.B., Dietrich, F.S., and Heitman, J. 2004. Convergent evolution of chromosomal sex-determining regions in the animal and fungal kingdoms. PLoS Biol. 2, e384.

    Article  Google Scholar 

  • Fraser, J.A., Giles, S.S., Wenink, E.C., Geunes-Boyer, S.G., Wright, J.R., Diezmann, S., Allen, A., Stajich, J.E., Dietrich, F.S., Perfect, J.R., et al. 2005. Same-sex mating and the origin of the Vancouver Island Cryptococcus gattii outbreak. Nature 437, 1360–1364.

    Article  CAS  PubMed  Google Scholar 

  • Giles, S.S., Dagenais, T.R.T., Botts, M.R., Keller, N.P., and Hull, C.M. 2009. Elucidating the pathogenesis of spores from the human fungal pathogen Cryptococcus neoformans. Infect. Immun. 77, 3491–3500.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hartmann, H.A., Kahmann, R., and Bölker, M. 1996. The pheromone response factor coordinates filamentous growth and pathogenicity in Ustilago maydis. EMBO J. 15, 1632–1641.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Heimel, K., Scherer, M., Schuler, D., and Kämper, J. 2010a. The Ustilago maydis Clp1 protein orchestrates pheromone and b-dependent signaling pathways to coordinate the cell cycle and pathogenic development. Plant Cell. 22, 2908–2922.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heimel, K., Scherer, M., Vranes, M., Wahl, R., Pothiratana, C., Schuler, D., Vincon, V., Finkernagel, F., Flor-Parra, I., and Kämper, J. 2010b. The transcription factor Rbf1 is the master regulator for b-mating type controlled pathogenic development in Ustilago maydis. PLoS Pathog. 6, e1001035.

    Article  Google Scholar 

  • Hsueh, Y.P., Xue, C., and Heitman, J. 2009. A constitutively active GPCR governs morphogenic transitions in Cryptococcus neoformans. EMBO J. 28, 1220–1233.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang, M., Hebert, A.S., Coon, J.J., and Hull, C.M. 2015. Protein composition of infectious spores reveals novel sexual development and germination factors in Cryptococcus. PLoS Genet 11, e1005490.

    Article  Google Scholar 

  • Hull, C.M. and Heitman, J. 2002. Genetics of Cryptococcus neoformans. Annu. Rev. Genet. 36, 557–615.

    Article  CAS  PubMed  Google Scholar 

  • Hull, C.M., Boily, M.J., and Heitman, J. 2005. Sex-specific homeodomain proteins Sxi1α and Sxi2a coordinately regulate sexual development in Cryptococcus neoformans. Eukaryot. Cell 4, 526–535.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hull, C.M., Cox, G.M., and Heitman, J. 2004. The α-specific cell identity factor Sxi1α is not required for virulence of Cryptococcus neoformans. Infect. Immun. 72, 3643–3645.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hull, C.M., Davidson, R.C., and Heitman, J. 2002. Cell identity and sexual development in Cryptococcus neoformans are controlled by the mating-type-specific homeodomain protein Sxi1α. Genes Dev. 16, 3046–3060.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Idnurm, A. 2010. A tetrad analysis of the basidiomycete fungus Cryptococcus neoformans. Genetics 185, 153–163.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Idnurm, A., Bahn, Y.S., Nielsen, K., Lin, X., Fraser, J.A., and Heitman, J. 2005. Deciphering the model pathogenic fungus Cryptococcus neoformans. Nat. Rev. Microbiol. 3, 753–764.

    Article  CAS  PubMed  Google Scholar 

  • Inada, K., Morimoto, Y., Arima, T., Murata, Y., and Kamada, T. 2001. The clp1 gene of the mushroom Coprinus cinereus is essential for A-regulated sexual development. Genetics 157, 133–140.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Janbon, G., Maeng, S., Yang, D.H., Ko, Y.J., Jung, K.W., Moyrand, F., Floyd, A., Heitman, J., and Bahn, Y.S. 2010. Characterizing the role of RNA silencing components in Cryptococcus neoformans. Fungal Genet. Biol. 47, 1070–1080.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson, A.D. 1995. Molecular mechanisms of cell-type determination in budding yeast. Curr. Opin. Genet. Dev. 5, 552–558.

    Article  CAS  PubMed  Google Scholar 

  • Keeney, S. and Neale, M.J. 2006. Initiation of meiotic recombination by formation of DNA double-strand breaks: mechanism and regulation. Biochem. Soc. Trans. 34, 523–525.

    Article  CAS  PubMed  Google Scholar 

  • Kim, J., Chu, J., Shen, X., Wang, J., and Orkin, S.H. 2008. An extended transcriptional network for pluripotency of embryonic stem cells. Cell 132, 1049–1061.

    Article  CAS  PubMed  Google Scholar 

  • Kraus, P.R., Fox, D.S., Cox, G.M., and Heitman, J. 2003. The Cryptococcus neoformans MAP kinase Mpk1 regulates cell integrity in response to antifungal drugs and loss of calcineurin function. Mol. Microbiol. 48, 1377–1387.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kronstad, J., Saikia, S., Nielson, E.D., Kretschmer, M., Jung, W., Hu, G., Geddes, J.M.H., Griffiths, E.J., Choi, J., Cadieux, B., et al. 2012. Adaptation of Cryptococcus neoformans to mammalian hosts: integrated regulation of metabolism and virulence. Eukaryot. Cell 11, 109–118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kruzel, E.K., Giles, S.S., and Hull, C.M. 2012. Analysis of Cryptococcus neoformans sexual development reveals rewiring of the pheromone-response network by a change in transcription factor identity. Genetics 191, 435–449.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kües, U. and Casselton, L.A. 1992. Homeodomains and regulation of sexual development in basidiomycetes. Trends Genet. 8, 154–155.

    Article  PubMed  Google Scholar 

  • Kvaal, C., Lachke, S.A., Srikantha, T., Daniels, K., McCoy, J., and Soll, D.R. 1999. Misexpression of the opaque-phase-specific gene PEP1 (SAP1) in the white phase of Candida albicans confers increased virulence in a mouse model of cutaneous infection. Infect. Immun. 67, 6652–6662.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kwon-Chung, K.J. 1975. A new genus, Filobasidiella, the perfect state of Cryptococcus neoformans. Mycologia 67, 1197–1200.

    Article  CAS  PubMed  Google Scholar 

  • Kwon-Chung, K.J. and Bennett, J.E. 1978. Distribution of a and a mating types of Cryptococcus neoformans among natural and clinical isolates. Am. J. Epidemiol. 108, 337–340.

    CAS  PubMed  Google Scholar 

  • Lengeler, K.B., Fox, D.S., Fraser, J.A., Allen, A., Forrester, K., Dietrich, F.S., and Heitman, J. 2002. Mating-type locus of Cryptococcus neoformans: a step in the evolution of sex chromosomes. Eukaryot. Cell 1, 704–718.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lengeler, K.B., Wang, P., Cox, G.M., Perfect, J.R., and Heitman, J. 2000. Identification of the MATa mating-type locus of Cryptococcus neoformans reveals a serotype A MATa strain thought to have been extinct. Proc. Natl. Acad. Sci. USA 97, 14455–14460.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin, S.J., Schranz, J., and Teutsch, S.M. 2001. Aspergillosis case-fatality rate: systematic review of the literature. Clin. Infect. Dis. 32, 358–366.

    Article  CAS  PubMed  Google Scholar 

  • Lin, X., Jackson, J.C., Feretzaki, M., Xue, C., and Heitman, J. 2010. Transcription factors Mat2 and Znf2 operate cellular circuits orchestrating opposite- and same-sex mating in Cryptococcus neoformans. PLoS Genet. 6, e1000953.

    Article  Google Scholar 

  • Lin, X., Hull, C.M., and Heitman, J. 2005. Sexual reproduction between partners of the same mating type in Cryptococcus neoformans. Nature 434, 1017–1021.

    Article  CAS  PubMed  Google Scholar 

  • Litvintseva, A.P., Marra, R.E., Nielsen, K., Heitman, J., Vilgalys, R., and Mitchell, T.G. 2003. Evidence of sexual recombination among Cryptococcus neoformans serotype A isolates in Sub-Saharan Africa. Eukaryot. Cell 2, 1162–1168.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • MacArthur, S., Li, X.Y., Li, J., Brown, J.B., Chu, H.C., Zeng, L., Grondona, B.P., Hechmer, A., Simirenko, L., Keränen, S.V., et al. 2009. Developmental roles of 21 Drosophila transcription factors are determined by quantitative differences in binding to an overlapping set of thousands of genomic regions. Genome Biol. 10, R80.

    Article  Google Scholar 

  • Mead, M.E., Stanton, B.C., Kruzel, E.K., and Hull, C.M. 2015. Targets of the sex inducer homeodomain proteins are required for fungal development and virulence in Cryptococcus neoformans. Mol. Microbiol. 95, 804–818.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miller, M.G. and Johnson, A.D. 2002. White-opaque switching in Candida albicans is controlled by mating-type locus homeodomain proteins and allows efficient mating. Cell 110, 293–302.

    Article  CAS  PubMed  Google Scholar 

  • Monteiro, A. 2012. Gene regulatory networks reused to build novel traits. Bioessays 34, 181–186.

    Article  CAS  PubMed  Google Scholar 

  • Ni, M., Feretzaki, M., Li, W., Floyd-Averette, A., Mieczkowski, P., Dietrich, F.S., and Heitman, J. 2013. Unisexual and heterosexual meiotic reproduction generate aneuploidy and phenotypic diversity de novo in the yeast Cryptococcus neoformans. PLoS Biol. 11, e1001653.

    Article  Google Scholar 

  • Nobile, C.J., Fox, E.P., Nett, J.E., Sorrells, T.R., Mitrovich, Q.M., Hernday, A.D., Tuch, B.B., Andes, D.R., and Johnson, A.D. 2012. A Recently evolved transcriptional network controls biofilm development in Candida albicans. Cell 148, 126–138.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • O’Gorman, C.M., Fuller, H.T., and Dyer, P.S. 2009. Discovery of a sexual cycle in the opportunistic fungal pathogen Aspergillus fumigatus. Nature 457, 1–5.

    Google Scholar 

  • Panepinto, J., Liu, L., Ramos, J., Zhu, X., Valyi-Nagy, T., Eksi, S., Fu, J., Jaffer, H.A., Wiches, B., and Williamson, P.R. 2005. The DEAD-box RNA helicase Vad1 regulates multiple virulenceassociated genes in Cryptococcus neoformans. J. Clin. Invest. 115, 632–641.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paoletti, M., Rydholm, C., Schwier, E.U., Anderson, M.J., Szakacs, G., Lutzoni, F., Debeaupuis, J.P., Latgé, J.P., Denning, D.W., and Dyer, P.S. 2005. Evidence for sexuality in the opportunistic fungal pathogen Aspergillus fumigatus. Curr. Biol. 15, 1242–1248.

    Article  CAS  PubMed  Google Scholar 

  • Park, B.J., Wannemuehler, K.A., Marston, B.J., Govender, N., Pappas, P.G., and Chiller, T.M. 2009. Estimation of the current global burden of Cryptococcal meningitis among persons living with HIV/AIDS. AIDS 23, 525–530.

    Article  PubMed  Google Scholar 

  • Park, Y.D. and Williamson, P.R. 2012. “Popping the clutch”: novel mechanisms regulating sexual development in Cryptococcus neoformans. Mycopathologia 173, 359–366.

    Article  CAS  PubMed  Google Scholar 

  • Park, Y.D., Panepinto, J., Shin, S., Larsen, P., Giles, S., and Williamson, P.R. 2010. Mating pheromone in Cryptococcus neoformans is regulated by a transcriptional/degradative “futile” cycle. J. Biol. Chem. 285, 34746–34756.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Petzold, E.W., Himmelreich, U., Mylonakis, E., Rude, T., Toffaletti, D., Cox, G.M., Miller, J.L., and Perfect, J.R. 2006. Characterization and regulation of the trehalose synthesis pathway and its importance in the pathogenicity of Cryptococcus neoformans. Infect. Immun. 74, 5877–5887.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pittet, M.J., Nahrendorf, M., and Swirski, F.K. 2014. The journey from stem cell to macrophage. Ann. NY Acad. Sci. 1319, 1–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qiu, J., Olszewski, M.A., and Williamson, P.R. 2013. Cryptococcus neoformans growth and protection from innate immunity are dependent on expression of a virulence-associated DEAD-box protein, Vad1. Infect. Immun. 81, 777–788.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quenault, T., Lithgow, T., and Traven, A. 2011. PUF proteins: repression, activation, and mRNA localization. Trends Cell Biol. 21, 104–112.

    Article  CAS  PubMed  Google Scholar 

  • Sabiiti, W., Robertson, E., Beale, M.A., Johnston, S.A., Brouwer, A.E., Loyse, A., Jarvis, J.N., Gilbert, A.S., Fisher, M.C., Harrison, T.S., et al. 2014. Efficient phagocytosis and laccase activity affect the outcome of HIV-associated cryptococcosis. J. Clin. Invest. 124, 2000–2008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sahni, N., Yi, S., Daniels, K.J., Srikantha, T., Pujol, C., and Soll, D.R. 2009. Genes selectively up-regulated by pheromone in white cells are involved in biofilm formation in Candida albicans. PLoS Pathog. 5, e1000601.

    Article  Google Scholar 

  • Salas, S.D., Bennett, J.E., Kwon-Chung, K.J., Perfect, J.R., and Williamson, P.R. 1996. Effect of the laccase gene CNLAC1, on virulence of Cryptococcus neoformans. J. Exp. Med. 184, 377–386.

    Article  CAS  PubMed  Google Scholar 

  • Sasse, C., Hasenberg, M., Weyler, M., Gunzer, M., and Morschhauser, J. 2013. White-opaque switching of Candida albicans allows immune evasion in an environment-dependent fashion. Eukaryot. Cell 12, 50–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schoustra, S.E., Debets, A.J.M., Slakhorst, M., and Hoekstra, R.F. 2007. Mitotic recombination accelerates adaptation in the fungus Aspergillus nidulans. PLoS Genet. 3, e68.

    Article  Google Scholar 

  • Sorrells, T.R. and Johnson, A.D. 2015. Making sense of transcription networks. Cell 161, 714–723.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sugimoto, A., Iino, Y., Maeda, T., Watanabe, Y., and Yamamoto, M. 1991. Schizosaccharomyces pombe ste11+ encodes a transcription factor with an HMG motif that is a critical regulator of sexual development. Genes Dev. 5, 1990–1999.

    Article  CAS  PubMed  Google Scholar 

  • Voelz, K., Ma, H., Phadke, S., Byrnes, E.J., Zhu, P., Mueller, O., Farrer, R.A., Henk, D.A., Lewit, Y., Hsueh, Y.P., et al. 2013. Transmission of hypervirulence traits via sexual reproduction within and between lineages of the human fungal pathogen Cryptococcus gattii. PLoS Genet. 9, e1003771.

    Article  Google Scholar 

  • Wang, L., Tian, X., Gyawali, R., and Lin, X. 2013. Fungal adhesion protein guides community behaviors and autoinduction in a paracrine manner. Proc. Natl. Acad. Sci. USA 110, 11571–11576.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, L., Tian, X., Gyawali, R., Upadhyay, S., Foyle, D., Wang, G., Cai, J.J., and Lin, X. 2014. Morphotype transition and sexual reproduction are genetically associated in a ubiquitous environmental pathogen. PLoS Pathog. 10, e1004185.

    Article  Google Scholar 

  • Wang, L., Zhai, B., and Lin, X. 2012. The link between morphotype transition and virulence in Cryptococcus neoformans. PLoS Pathog. 8, e1002765.

    Article  Google Scholar 

  • Wang, X., Darwiche, S., and Heitman, J. 2013. Sex-induced silencing operates during opposite-sex and unisexual reproduction in Cryptococcus neoformans. Genetics 193, 1163–1174.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, X., Hsueh, Y.P., Li, W., Floyd, A., Skalsky, R., and Heitman, J. 2010. Sex-induced silencing defends the genome of Cryptococcus neoformans via RNAi. Genes Dev. 24, 2566–2582.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zarnack, K., Eichhorn, H., Kahmann, R., and Feldbrgge, M. 2008. Pheromone-regulated target genes respond differentially to MAPK phosphorylation of transcription factor Prf1. Mol. Microbiol. 69, 1041–1053.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christina M. Hull.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s12275-016-0648-7.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mead, M.E., Hull, C.M. Transcriptional control of sexual development in Cryptococcus neoformans . J Microbiol. 54, 339–346 (2016). https://doi.org/10.1007/s12275-016-6080-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-016-6080-1

Keywords

Navigation