Skip to main content
Log in

Evidence against the physiological role of acetyl phosphate in the phosphorylation of the ArcA response regulator in Escherichia coli

  • Note
  • Published:
The Journal of Microbiology Aims and scope Submit manuscript

Abstract

The Arc two-component signal transduction system of Escherichia coli comprises the ArcB sensor kinase and the ArcA response regulator. Under anoxic growth conditions, ArcB autophosphorylates and transphos-phorylates ArcA, which, in turn, represses or activates its target operons. ArcA has been shown to be able to autophosphorylate in vitro at the expense of acetyl-P. Here, the in vivo effect of acetyl phosphate on the redox signal transduction by the Arc system was assessed. Our results indicate that acetyl phosphate can modulate the expression of ArcA-P target genes only in the absence of ArcB. Therefore, the acetyl phosphate dependent ArcA phosphorylation route does not seem to play a significant role under physiological conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bohannon, D.E., N. Connell, J. Keener, A. Tormo, M. Espinosa-Urgel, M.M. Zambrano, and R. Kolter. 1991. Stationary-phaseinducible “gearbox” promoters: Differential effects of katF mutations and role of σ70. J. Bacteriol. 173, 4482–4492.

    PubMed  CAS  Google Scholar 

  • Bouché, S., E. Klauck, D. Fischer, M. Lucassen, K. Jung, and R. Hengge-Aronis. 1998. Regulation of RssB-dependent proteolysis in Escherichia coli: a role for acetyl phosphate in a response regulator-controlled process. Mol. Microbiol. 27, 787–795.

    Article  PubMed  Google Scholar 

  • Chamnongpol, S. and E.A. Groisman. 2000. Acetyl phosphate-dependent activation of a mutant PhoP response regulator that functions independently of its cognate sensor kinase. J. Mol. Biol. 300, 291–305.

    Article  PubMed  CAS  Google Scholar 

  • Dailey, F.E. and H.C. Berg. 1993. Change in direction of flagellar rotation in Escherichia coli mediated by acetate kinase. J. Bacteriol. 175, 3236–3239.

    PubMed  CAS  Google Scholar 

  • Deretic, V., J.H.J. Leveau, C.D. Mohr, and N.S. Hibler. 1992. In vitro phosphorylation of AlgR, a regulator of mucoidy in Pseudomonas aeruginosa, by a histidine protein kinase and effects of small phospho-donor molecules. Mol. Microbiol. 6, 2761–2767.

    Article  PubMed  CAS  Google Scholar 

  • Drapal, N. and G. Sawers. 1995. Purification of ArcA and analysis of its specific interaction with the pfl promoter-regulatory region. Mol. Microbiol. 16, 597–607.

    Article  PubMed  CAS  Google Scholar 

  • Feng, J., M.R. Atkinson, W. McCleary, J.B. Stock, B.L. Wanner, and A.J. Ninfa. 1992. Role of phosphorylated metabolic intermediates in the regulation of glutamine synthetase synthesis in Escherichia coli. J. Bacteriol. 174, 6061–6070.

    PubMed  CAS  Google Scholar 

  • Fredericks, C.E., S. Shibata, S.I. Aizawa, S.A. Reimann, and A.J. Wolfe. 2006. Acetyl phosphate-sensitive regulation of flagellar biogenesis and capsular biosynthesis depends on the Rcs phosphorelay. Mol. Microbiol. 61, 734–747.

    Article  PubMed  CAS  Google Scholar 

  • Georgellis, D., O. Kwon, and E.C. Lin. 1999. Amplification of signaling activity of the arc two-component system of Escherichia coli by anaerobic metabolites — An in vitro study with different protein modules. J. Biol. Chem. 274, 35950–35954.

    Article  PubMed  CAS  Google Scholar 

  • Georgellis, D., O. Kwon, and E.C.C. Lin. 2001a. Quinones as the redox signal for the Arc two-component system of bacteria. Science 292, 2314–2316.

    Article  PubMed  CAS  Google Scholar 

  • Georgellis, D., O. Kwon, E.C. Lin, S.M. Wong, and B.J. Akerley. 2001b. Redox signal transduction by the ArcB sensor kinase of Haemophilus influenzae lacking the PAS domain. J. Bacteriol. 183, 7206–7212.

    Article  PubMed  CAS  Google Scholar 

  • Georgellis, D., O. Kwon, P. De Wulf, and E.C.C. Lin. 1998. Signal decay through a reverse phosphorelay in the arc two-component signal transduction system. J. Biol. Chem. 273, 32864–32869.

    Article  PubMed  CAS  Google Scholar 

  • Georgellis, D., A.S. Lynch, and E.C. Lin. 1997. In vitro phosphorylation study of the arc two-component signal transduction system of Escherichia coli. J. Bacteriol. 179, 5429–5435.

    PubMed  CAS  Google Scholar 

  • Head, C.G., A. Tardy, and L.J. Kenney. 1998. Relative binding affinities of OmpR and OmpR-phosphate at the ompF and ompC regulatory sites. J. Mol. Biol. 281, 857–870.

    Article  PubMed  CAS  Google Scholar 

  • Hiratsu, K., K. Makino, A. Nakata, and H. Shinagawa. 1995. Autophosphorylation and activation of transcriptional activator PhoB of Escherichia coli by acetyl phosphate in vitro. Gene 161, 7–10.

    Article  PubMed  CAS  Google Scholar 

  • Hoch, J.A. 1995. Control of cellular development in sporulating bacteria by the phosphorelay two-component signal transduction system, p. 129–144. In J.A. Hoch and T.J. Silhavy (eds.), Two-component signal transduction. ASM Press, Washington, D.C., USA.

    Google Scholar 

  • Holman, T.R., Z. Wu, B.L. Wanner, and C.T. Walsh. 1994. Identification of the DNA-binding site for the phosphorylated VanR protein required for vancomycin resistance in Enterococcus faecium. Biochemistry 33, 4625–4631.

    Article  PubMed  CAS  Google Scholar 

  • Hyede, M., P. Laloi, and R. Portalier. 2000. Involvement of carbon source and acetyl phosphate in the external pH-dependent expression of porin genes in Escherichia coli. J. Bacteriol. 182, 198–202.

    Article  Google Scholar 

  • Jung, W.S., Y.R. Jung, D.B. Oh, H.A. Kang, S.Y. Lee, M. Chavez-Canales, D. Georgellis, and O. Kwon. 2008. Characterization of the Arc two-component signal transduction system of the capnophilic rumen bacterium Mannheimia succiniciproducens. FEMS Microbiol. Lett. 284, 109–119.

    Article  PubMed  CAS  Google Scholar 

  • Kim, S.K., M.R. Wilmes-Riesenberg, and B.L. Wanner. 1996. Involvement of the sensor kinase EnvZ in the in vivo activation of the response regulator PhoB by acetyl phosphate. Mol. Microbiol. 22, 135–147.

    Article  PubMed  CAS  Google Scholar 

  • Klein, A.H., A. Shulla, S.A. Reimann, S.H. Keating, and A.J. Wolfe. 2007. The intracellular concentration of acetyl phosphate in Escherichia coli is sufficient for direct phosphorylation of two-component response regulators. J. Bacteriol. 189, 5574–5581.

    Article  PubMed  CAS  Google Scholar 

  • Kwon, O., D. Georgellis, A.S. Lynch, D. Boyd, and E.C. Lin. 2000a. The ArcB sensor kinase of Escherichia coli: genetic exploration of the transmembrane region. J. Bacteriol. 182, 2960–2966.

    Article  PubMed  CAS  Google Scholar 

  • Kwon, O., D. Georgellis, and E.C. Lin. 2000b. Phosphorelay as the sole physiological route of signal transmission by the arc two-component system of Escherichia coli. J. Bacteriol. 182, 3858–3862.

    Article  PubMed  CAS  Google Scholar 

  • Kwon, O., D. Georgellis, and E.C. Lin. 2003. Rotational on-off switching of a hybrid membrane sensor kinase Tar-ArcB in Escherichia coli. J. Biol. Chem. 278, 13192–13195.

    Article  PubMed  CAS  Google Scholar 

  • Lindqvist, A., J. Membrillo-Hernández, R.K. Poole, and G.M. Cook. 2000. Roles of respiratory oxidases in protecting Escherichia coli K12 from oxidative stress. Antonie Van Leeuwenhoek 78, 28–31.

    Article  Google Scholar 

  • Link, A.J., D. Phillips, and G.M. Church. 1997. Methods for generating precise deletions and insertions in the genome of wildtype Escherichia coli: application to open reading frame characterization. J. Bacteriol. 179, 6228–6237.

    PubMed  CAS  Google Scholar 

  • Liu, X. and P. De Wulf. 2004. Probing the ArcA-P modulon of Escherchia coli by whole genome transcriptional analysis and sequence recognition profiling. J. Biol. Chem. 279, 12588–12597.

    Article  PubMed  CAS  Google Scholar 

  • Lukat, G.S., W.R. McCleary, A.M. Stock, and J.B. Stock. 1992. Phosphorylation of bacterial response regulator proteins by low molecular weight phospho-donors. Proc. Natl. Acad. Sci. USA 89, 718–722.

    Article  PubMed  CAS  Google Scholar 

  • Lynch, A.S. and E.C.C. Lin. 1996. Transcriptional control mediated by the ArcA two-component response regulator protein of Escherichia coli: Characterization of DNA binding at target promoters. J. Bacteriol. 178, 6238–6249.

    PubMed  CAS  Google Scholar 

  • Magasanik, B. 1995. Historical perspective, p. 1–5. In J.A. Hoch and T.J. Silhavy (eds.), Two-component signal transduction. ASM Press, Washington, D.C., USA.

    Google Scholar 

  • Malpica, R., B. Franco, C. Rodriguez, O. Kwon, and D. Georgellis. 2004. Identification of a quinone-sensitive redox switch in the ArcB sensor kinase. Proc. Natl. Acad. Sci. USA 101, 13318–13323.

    Article  PubMed  CAS  Google Scholar 

  • Malpica, R., G.R. Sandoval, C. Rodriguez, B. Franco, and D. Georgellis. 2006. Signaling by the arc two-component system provides a link between the redox state of the quinone pool and gene expression. Antioxid. Redox Signal. 8, 781–795.

    Article  PubMed  CAS  Google Scholar 

  • Matsubara, M. and T. Mizuno. 1999. EnvZ-independent phosphotransfer signaling pathway of the OmpR-mediated osmoregulatory expression of OmpC and OmpF in Escherichia coli. Biosci. Biotechnol. Biochem. 63, 408–414.

    Article  PubMed  CAS  Google Scholar 

  • McCleary, W.R. 1996. The activation of PhoB by acetylphosphate. Mol. Microbiol. 20, 1155–1163.

    Article  PubMed  CAS  Google Scholar 

  • McCleary, W.R. and J.B. Stock. 1994. Acetyl phosphate and the activation of two-component response regulators. J. Biol. Chem. 269, 31567–31572.

    PubMed  CAS  Google Scholar 

  • Miller, J. 1992. Experiments in molecular genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, N.Y., USA.

    Google Scholar 

  • Nyström, T., C. Larsson, and L. Gustafsson. 1996. Bacterial defense against aging: Role of the Escherichia coli ArcA regulator in gene expression, readjusted energy flux and survival during stasis. EMBO J. 15, 3219–3228.

    PubMed  Google Scholar 

  • Pena-Sandoval, G.R., O. Kwon, and D. Georgellis. 2005. Requirement of the receiver and phosphotransfer domains of ArcB for efficient dephosphorylation of phosphorylated ArcA in vivo. J. Bacteriol. 187, 3267–3272.

    Article  PubMed  CAS  Google Scholar 

  • Prüß, B.M. and A.J. Wolfe. 1994. Regulation of acetyl phosphate synthesis and degradation, and control of flagellar expression in Escherichia coli. Mol. Microbiol. 12, 973–984.

    Article  PubMed  Google Scholar 

  • Reyrat, J.M., M. David, C. Blonski, P. Boistard, and J. Batut. 1993. Oxygen-regulated in vitro transcription of Rhizobium meliloti nifA and fixK genes. J. Bacteriol. 175, 6867–6872.

    PubMed  CAS  Google Scholar 

  • Rodriguez, C., O. Kwon, and D. Georgellis. 2004. Effect of D-lactate on the physiological activity of the ArcB sensor kinase in Escherichia coli. J. Bacteriol. 186, 2085–2090.

    Article  PubMed  CAS  Google Scholar 

  • Schröder, I., C.D. Wolin, R. Cavicchioli, and R.P. Gunsalus. 1994. Phosphorylation and dephosphorylation of the NarQ, NarX, and NarL proteins of the nitrate-dependent two-component regulatory system of Escherichia coli. J. Bacteriol. 176, 4985–4992.

    PubMed  Google Scholar 

  • Sevcik, M., A. Sebkova, J. Volf, and I. Rychlik. 2001. Transcription of arcA and rpoS during growth of Salmonella typhimurium under aerobic and microaerobic conditions. Microbiology 147, 701–708.

    PubMed  CAS  Google Scholar 

  • Shin, S. and C. Park. 1995. Modulation of flagellar expression in Escherichia coli by acetyl phosphate and the osmoregulator OmpR. J. Bacteriol. 177, 4696–4702.

    PubMed  CAS  Google Scholar 

  • Stock, J.B., M.G. Surette, M. Levit, and P. Park. 1995. Two-component signal transduction systems: structure-function relationships and mechanisms of catalysis, p. 25–51. In J.A. Hoch and T.J. Silhavy (eds.), Two-component signal transduction. ASM Press, Washington, D.C., USA.

    Google Scholar 

  • Wanner, B.L. 1992. Is cross regulation by phosphorylation of two-component response regulator proteins important in bacteria? J. Bacteriol. 174, 2053–2058.

    PubMed  CAS  Google Scholar 

  • Wanner, B.L. and M.R. Wilmes-Riesenberg. 1992. Involvement of phosphotransacetylase, acetate kinase, and acetyl phosphate synthesis in the control of the phosphate regulon in Escherichia coli. J. Bacteriol. 174, 2124–2130.

    PubMed  CAS  Google Scholar 

  • Wolfe, A.J. 2005. The acetate switch. Microbiol. Mol. Biol. Rev. 69, 12–50.

    Article  PubMed  CAS  Google Scholar 

  • Wolfe, A.J., D.E. Chang, J.D. Walker, J.E. Seitz-Partridge, M.D. Vidaurri, C.F. Lange, B.M. Pruss, M.C. Henk, J.C. Larkin, and T. Conway. 2003. Evidence that acetyl phosphate functions as a global signal during biofilm development. Mol. Microbiol. 48, 977–988.

    Article  PubMed  CAS  Google Scholar 

  • Yu, D., H.M. Ellis, E.C. Lee, N.A. Jenkins, N.G. Copeland, and D.L. Court. 2000. An efficient recombination system for chromosome engineering in Escherichia coli. Proc. Natl. Acad. Sic. USA 97, 5978–5983.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ohsuk Kwon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, X., Peña Sandoval, G.R., Wanner, B.L. et al. Evidence against the physiological role of acetyl phosphate in the phosphorylation of the ArcA response regulator in Escherichia coli . J Microbiol. 47, 657–662 (2009). https://doi.org/10.1007/s12275-009-0087-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-009-0087-9

Keywords

Navigation