Skip to main content
Log in

Let the light be a guide: Chromophore communication in metal-organic frameworks

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The photonic characteristics of chromophore-containing metal-organic frameworks (MOFs) have led to extensive photophysical studies in an effort to capitalize on the potency of precisely controlled chromophore ensembles. Several examples have laid the foundation that demonstrates how photophysical properties of chromophores can be manipulated by tuning their communications (interactions) through integration within a MOF matrix. The main focus of this review is on harnessing the versatile MOF platform to accentuate the photophysical properties of integrated chromophores. In particular, this review will highlight chromophore dynamics that enhance, alter, or tune the photoluminescence response of single- and multi-chromophore-containing scaffolds, as well as alignment-guided anisotropic fluorescence. Building upon this groundwork, utilization of a hybrid crystalline motif can induce preferential orientation of chromophores resulting in enhanced communication and tailored behavior compared to randomly oriented emissive molecules. Moreover, frameworks that produce upconverted emission via sensitized triplet-triplet annihilation (sTTA), excited-state absorption (ESA), energy transfer upconversion (ETU), multi-photon absorption (MPA), or second-harmonic generation (SHG) can invoke dynamic control of material properties using photochromic linkers and will be discussed herein with a focus on the effects of chromophore alignment. Integration within a framework is a vehicle to fuse chromophores into solid-state platforms, opening an avenue for chromophore utilization in applications such as portable electronics that require solids or thin films. For those reasons, the design of chromophore-containing MOFs with desirable properties that rely on the alignment and communication of hundreds of chromophores within a single platform is a pressing demand for the development of futuristic technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Goswami, S.; Miller, C. E.; Logsdon, J. L.; Buru, C. T.; Wu, Y.-L.; Bowman, D. N.; Islamoglu, T.; Asiri, A. M.; Cramer, C. J.; Wasielewski, M. R. et al. Atomistic approach toward selective photocatalytic oxidation of a mustard-gas simulant: A case study with heavy-chalcogen-containing PCN-57 analogues. ACS Appl. Mater. Interfaces 2017, 9, 19535–19540.

    CAS  Google Scholar 

  2. Goswami, S.; Chen, M.; Wasielewski, M. R.; Farha, O. K.; Hupp, J. T. Boosting transport distances for molecular excitons within photoexcited metal-organic framework films. ACS Appl. Mater. Interfaces 2018, 10, 34409–34417.

    CAS  Google Scholar 

  3. Champsaur, A. M.; Yu, J.; Roy, X.; Paley, D. W.; Steigerwald, M. L.; Nuckolls, C.; Bejger, C. M. Two-dimensional nanosheets from redox-active superatoms. ACS Cent. Sci. 2017, 3, 1050–1055.

    CAS  Google Scholar 

  4. Mayer, D. C.; Manzi, A.; Medishetty, R.; Winkler, B.; Schneider, C.; Kieslich, G.; Pöthig, A.; Feldmann, J.; Fischer, R. A. Controlling multiphoton absorption efficiency by chromophore packing in metal-organic frameworks. J. Am. Chem. Soc. 2019, 141, 11594–11602.

    CAS  Google Scholar 

  5. Qiao, X.-Q.; Zhang, Z.-W.; Li, Q.-H.; Hou, D. F.; Zhang, Q. C.; Zhang, J.; Li, D.-S.; Feng, P. Y.; Bu, X. H. In situ synthesis of n-n Bi2MoO6 & Bi2S3 heterojunctions for highly efficient photocatalytic removal of Cr(VI). J. Mater. Chem. A 2018, 6, 22580–22589.

    CAS  Google Scholar 

  6. Park, H. J.; So, M. C.; Gosztola, D.; Wiederrecht, G. P.; Emery, J. D.; Martinson, A. B. F.; Er, S.; Wilmer, C. E.; Vermeulen, N. A.; Aspuru-Guzik, A. et al. Layer-by-layer assembled films of perylene diimide- and squaraine-containing metal-organic framework-like materials: Solar energy capture and directional energy transfer. ACS Appl. Mater. Interfaces 2016, 8, 24983–24988.

    CAS  Google Scholar 

  7. Rudd, N. D.; Liu, Y. Y.; Tan, K.; Chen, F.; Chabal, Y. J.; Li, J. Luminescent metal-organic framework for lithium harvesting applications. ACS Sustain. Chem. Eng. 2019, 7, 6561–6568.

    CAS  Google Scholar 

  8. Chen, X. T.; Bu, X. H.; Lin, Q. P.; Mao, C. Y.; Zhai, Q.-G.; Wang, Y.; Feng, P. Y. Selective ion exchange and photocatalysis by zeolite-like semiconducting chalcogenide. Chem.—Eur. J. 2017, 23, 11913–11919.

    CAS  Google Scholar 

  9. Zhang, Y. M.; Yuan, S.; Day, G.; Wang, X.; Yang, X. Y.; Zhou, H.-C. Luminescent sensors based on metal-organic frameworks. Coord. Chem. Rev. 2018, 354, 28–45.

    CAS  Google Scholar 

  10. Marin, D. M.; Payerpaj, S.; Collier, G. S.; Ortiz, A. L.; Singh, G.; Jones, M.; Walter, M. G. Efficient intersystem crossing using singly halogenated carbomethoxyphenyl porphyrins measured using delayed fluorescence, chemical quenching, and singlet oxygen emission. Phys. Chem. Chem. Phys. 2015, 17, 29090–29096.

    CAS  Google Scholar 

  11. Medishetty, R.; Nalla, V.; Nemec, L.; Henke, S.; Mayer, D.; Sun, H. D.; Reuter, K.; Fischer, R. A. A new class of lasing materials: Intrinsic stimulated emission from nonlinear optically active metal-organic frameworks. Adv. Mater. 2017, 29, 1605637.

    Google Scholar 

  12. Nocera, D. G The artificial leaf. Acc. Chem. Res. 2012, 45, 767–776.

    CAS  Google Scholar 

  13. Lustig, W. P.; Shen, Z. Q.; Teat, S. J.; Javed, N.; Velasco, E.; O’Carroll, D. M.; Li, J. Rational design of a high-efficiency, multivariate metal-organic framework phosphor for white LED bulbs. Chem. Sci. 2020, 11, 1814–1824.

    CAS  Google Scholar 

  14. Gust, D.; Moore, T. A.; Moore, A. L. Solar fuels via artificial photosynthesis. Acc. Chem. Res. 2009, 42, 1890–1898.

    CAS  Google Scholar 

  15. Imahori, H.; Mori, Y.; Matano, Y. Nanostructured artificial photosynthesis. J. Photochem. Photobiol. C Photochem. Rev. 2003, 4, 51–83.

    CAS  Google Scholar 

  16. Alstrum-Acevedo, J. H.; Brennaman, M. K.; Meyer, T. J. Chemical approaches to artificial photosynthesis. 2. Inorg. Chem. 2005, 44, 6802–6827.

    CAS  Google Scholar 

  17. Berardi, S.; Drouet, S.; Francas, L.; Gimbert-Suriñach, C.; Guttentag, M.; Richmond, C.; Stoll, T.; Llobet, A. Molecular artificial photosynthesis. Chem. Soc. Rev. 2014, 43, 7501–7519.

    CAS  Google Scholar 

  18. Tachibana, Y.; Vayssieres, L.; Durrant, J. R. Artificial photosynthesis for solar water-splitting. Nat. Photonics 2012, 6, 511–518.

    CAS  Google Scholar 

  19. Kärkäs, M. D.; Verho, O.; Johnston, E. V.; Åkermark, B. Artificial photosynthesis: Molecular systems for catalytic water oxidation. Chem. Rev. 2014, 114, 11863–12001.

    Google Scholar 

  20. Liu, C.; Colón, B. C.; Ziesack, M.; Silver, P. A.; Nocera, D. G. Water splitting-biosynthetic system with CO2 reduction efficiencies exceeding photosynthesis. Science 2016, 352, 1210–1213.

    CAS  Google Scholar 

  21. Whang, D. R.; Apaydin, D. H. Artificial photosynthesis: Learning from nature. ChemPhotoChem 2018, 2, 148–160.

    CAS  Google Scholar 

  22. Xu, H.-Q.; Yang, S. Z.; Ma, X.; Huang, J. E.; Jiang, H.-L. Unveiling charge-separation dynamics in CdS/metal-organic framework composites for enhanced photocatalysis. ACS Catal. 2018, 8, 11615–11621.

    CAS  Google Scholar 

  23. Zhou, Y. X.; Hu, W. H.; Yang, S. Z.; Huang, J. E. Enhanced light harvesting ability in zeolitic imidazolate frameworks through energy transfer from CdS nanowires. Phys. Chem. Chem. Phys. 2020, 22, 3849–3854.

    CAS  Google Scholar 

  24. Jiao, W.; Zhu, J. X.; Ling, Y.; Deng, M. L.; Zhou, Y. M.; Feng, P. Y. Photoelectrochemical properties of MOF-induced surface-modified TiO2 photoelectrode. Nanoscale 2018, 10, 20339–20346.

    CAS  Google Scholar 

  25. Liu, X. Y.; Zhang, F. R.; Goh, T. W.; Li, Y.; Shao, Y. C.; Luo, L. S.; Huang, W. Y.; Long, Y. T.; Chou, L. Y.; Tsung, C. K. Using a multi-shelled hollow metal-organic framework as a host to switch the guest-to-host and guest-to-guest interactions. Angew. Chem., Int. Ed. 2018, 57, 2110–2114.

    CAS  Google Scholar 

  26. Shao, B. H.; Aprahamian, I. pH-induced fluorescence and thermal relaxation rate modulation in a hydrazone photoswitch. ChemPhotoChem 2019, 3, 361–364.

    CAS  Google Scholar 

  27. Gerkman, M. A.; Gibson, R. S. L.; Calbo, J.; Shi, Y. R.; Fuchter, M. J.; Han, G. G. D. Arylazopyrazoles for long-term thermal energy storage and optically triggered heat release below 0 °C. J. Am. Chem. Soc. 2020, 142, 8688–8695.

    Google Scholar 

  28. Zhang, Y. M.; Pang, J. D.; Li, J. L.; Yang, X. Y.; Feng, M. B.; Cai, P. Y.; Zhou, H. C. Visible-light harvesting pyrene-based MOFs as efficient ROS generators. Chem. Sci. 2019, 10, 8455–8460.

    CAS  Google Scholar 

  29. Baudron, S. A. Luminescent metal-organic frameworks based on dipyrromethene metal complexes and BODIPYs. CrystEngComm 2016, 18, 4671–4680.

    CAS  Google Scholar 

  30. Khatun, A.; Panda, D. K.; Sayresmith, N.; Walter, M. G.; Saha, S. Thiazolothiazole-based luminescent metal-organic frameworks with ligand-to-ligand energy transfer and Hg2+-sensing capabilities. Inorg. Chem. 2019, 58, 12707–12715.

    CAS  Google Scholar 

  31. Tian, S. F.; Chen, S. D.; Ren, X. T.; Cao, R. H.; Hu, H. Y.; Bai, F. Bottom-up fabrication of graphitic carbon nitride nanosheets modified with porphyrin via covalent bonding for photocatalytic H2 evolution. Nano Res. 2019, 12, 3109–3115.

    CAS  Google Scholar 

  32. Tian, S. F.; Chen, S. D.; Ren, X. T.; Hu, Y. Q.; Hu, H. Y.; Sun, J. J.; Bai, F. An efficient visible-light photocatalyst for CO2 reduction fabricated by cobalt porphyrin and graphitic carbon nitride via covalent bonding. Nano Res. 2020, 13, 2665–2672.

    CAS  Google Scholar 

  33. Zhang, N.; Wang, L.; Wang, H. M.; Cao, R. H.; Wang, J. F.; Bai, F.; Fan, H. Y. Self-assembled one-dimensional porphyrin nanostructures with enhanced photocatalytic hydrogen generation. Nano Lett. 2018, 18, 560–566.

    CAS  Google Scholar 

  34. Liu, Y. Q.; Wang, L.; Feng, H. X.; Ren, X. T.; Ji, J. J.; Bai, F.; Fan, H. Y. Microemulsion-assisted self-assembly and synthesis of size-controlled porphyrin nanocrystals with enhanced photocatalytic hydrogen evolution. Nano Lett. 2019, 19, 2614–2619.

    CAS  Google Scholar 

  35. Kim, Y.; Lee, J. H.; Ha, H.; Im, S. W.; Nam, K. T. Material science lesson from the biological photosystem. Nano Converg. 2016, 3, 19.

    Google Scholar 

  36. Heidary, N.; Harris, T. G. A. A.; Ly, K. H.; Kornienko, N. Artificial photosynthesis with metal and covalent organic frameworks (MOFs and COFs): Challenges and prospects in fuel-forming electrocatalysis. Physiol. Plant. 2019, 166, 460–471.

    CAS  Google Scholar 

  37. Nguyen, A. I.; Van Allsburg, K. M.; Terban, M. W.; Bajdich, M.; Oktawiec, J.; Amtawong, J.; Ziegler, M. S.; Dombrowski, J. P.; Lakshmi, K. V.; Drisdell, W. S. et al. Stabilization of reactive Co4O4 cubane oxygen-evolution catalysts within porous frameworks. Proc. Natl. Acad. Sci. USA 2019, 116, 11630–11639.

    CAS  Google Scholar 

  38. Paille, G.; Gomez-Mingot, M.; Roch-Marchal, C.; Lassalle-Kaiser, B.; Mialane, P.; Fontecave, M.; Mellot-Draznieks, C.; Dolbecq, A. A fully noble metal-free photosystem based on cobalt-polyoxometalates immobilized in a porphyrinic metal-organic framework for water oxidation. J. Am. Chem. Soc. 2018, 140, 3613–3618.

    CAS  Google Scholar 

  39. Luo, Y. C.; Chu, K. L.; Shi, J. Y.; Wu, D. J.; Wang, X. D.; Mayor, M.; Su, C. Y. Heterogenization of photochemical molecular devices: Embedding a metal-organic cage into a ZIF-8-derived matrix to promote proton and electron transfer. J. Am. Chem. Soc. 2019, 141, 13057–13065.

    CAS  Google Scholar 

  40. Zhang, S. Q.; Wang, S. Y.; Guo, L. P.; Chen, H.; Tan, B. E.; Jin, S. B. An artificial photosynthesis system comprising a covalent triazine framework as an electron relay facilitator for photochemical carbon dioxide reduction. J. Mater. Chem. C 2020, 8, 192–200.

    CAS  Google Scholar 

  41. Lustig, W. P.; Wang, F. M.; Teat, S. J.; Hu, Z. C.; Gong, Q. H.; Li, J. Chromophore-based luminescent metal-organic frameworks as lighting phosphors. Inorg. Chem. 2016, 55, 7250–7256.

    CAS  Google Scholar 

  42. Zhu, J.; Maza, W. A.; Morris, A. J. Light-harvesting and energy transfer in ruthenium(II)-polypyridyl doped zirconium(IV) metal-organic frameworks: A look toward solar cell applications. J. Photochem. Photobiol. A Chem. 2017, 344, 64–77.

    CAS  Google Scholar 

  43. Wang, Q.; Gao, Q. Y.; Al-Enizi, A. M.; Nafady, A.; Ma, S. Q. Recent advances in MOF-based photocatalysis: Environmental remediation under visible light. Inorg. Chem. Front. 2020, 7, 300–339.

    CAS  Google Scholar 

  44. Li, Y. F.; Pang, A. Y.; Wang, C. J.; Wei, M. D. Metal-organic frameworks: Promising materials for improving the open circuit voltage of dye-sensitized solar cells. J. Mater. Chem. 2011, 21, 17259–17264.

    CAS  Google Scholar 

  45. Lee, C. Y.; Farha, O. K.; Hong, B. J.; Sarjeant, A. A.; Nguyen, S. T.; Hupp, J. T. Light-harvesting metal-organic frameworks (MOFs): Efficient strut-to-strut energy transfer in bodipy and porphyrin-based MOFs. J. Am. Chem. Soc. 2011, 133, 15858–15861.

    CAS  Google Scholar 

  46. So, M. C.; Wiederrecht, G. P.; Mondloch, J. E.; Hupp, J. T.; Farha, O. K. Metal-organic framework materials for light-harvesting and energy transfer. Chem. Commun. 2015, 51, 3501–3510.

    CAS  Google Scholar 

  47. Williams, D. E.; Rietman, J. A.; Maier, J. M.; Tan, R.; Greytak, A. B.; Smith, M. D.; Krause, J. A.; Shustova, N. B. Energy transfer on demand: Photoswitch-directed behavior of metal-porphyrin frameworks. J. Am. Chem. Soc. 2014, 136, 11886–11889.

    CAS  Google Scholar 

  48. Goswami, S.; Ma, L.; Martinson, A. B. F.; Wasielewski, M. R.; Farha, O. K.; Hupp, J. T. Toward metal-organic framework-based solar cells: Enhancing directional exciton transport by collapsing three-dimensional film structures. ACS Appl. Mater. Interfaces 2016, 8, 30863–30870.

    CAS  Google Scholar 

  49. Cho, J.; Park, J. H.; Kim, J. K.; Schubert, E. F. White light-emitting diodes: History, progress, and future. Laser Photon. Rev. 2017, 11, 1600147.

    Google Scholar 

  50. Williams, D. E.; Shustova, N. B. Metal-organic frameworks as a versatile tool to study and model energy transfer processes. Chem.—Eur. J. 2015, 21, 15474–15479.

    CAS  Google Scholar 

  51. Wilbraham, L.; Coudert, F. X.; Ciofini, I. Modelling photophysical properties of metal-organic frameworks: A density functional theory based approach. Phys. Chem. Chem. Phys. 2016, 18, 25176–25182.

    CAS  Google Scholar 

  52. Xu, L. J.; Xu, G. T.; Chen, Z. N. Recent advances in lanthanide luminescence with metal-organic chromophores as sensitizers. Coord. Chem. Rev. 2014, 273–274, 47–62.

    Google Scholar 

  53. Sikdar, N.; Jayaramulu, K.; Kiran, V.; Rao, K. V.; Sampath, S.; George, S. J.; Maji, T. K. Redox-active metal-organic frameworks: Highly stable charge-separated states through strut/guest-to-strut electron transfer. Chem.—Eur. J. 2015, 21, 11701–11706.

    CAS  Google Scholar 

  54. Dolgopolova, E. A.; Williams, D. E.; Greytak, A. B.; Rice, A. M.; Smith, M. D.; Krause, J. A.; Shustova, N. B. A bio-inspired approach for chromophore communication: Ligand-to-ligand and host-to-guest energy transfer in hybrid crystalline scaffolds. Angew. Chem., Int. Ed. 2015, 54, 13639–13643.

    CAS  Google Scholar 

  55. Son, H. J.; Jin, S. Y.; Patwardhan, S.; Wezenberg, S. J.; Jeong, N. C.; So, M.; Wilmer, C. E.; Sarjeant, A. A.; Schatz, G. C.; Snurr, R. Q. et al. Light-harvesting and ultrafast energy migration in porphyrin-based metal-organic frameworks. J. Am. Chem. Soc. 2013, 135, 862–869.

    CAS  Google Scholar 

  56. Yang, N. N.; Fang, J. J.; Sui, Q.; Gao, E. Q. Incorporating electron-deficient bipyridinium chromorphores to make multiresponsive metal-organic frameworks. ACS Appl. Mater. Interfaces 2018, 10, 2735–2744.

    CAS  Google Scholar 

  57. Jones, C. L.; Tansell, A. J.; Easun, T. L. The lighter side of MOFs: Structurally photoresponsive metal-organic frameworks. J. Mater. Chem. A 2016, 4, 6714–6723.

    CAS  Google Scholar 

  58. Dolgopolova, E. A.; Rice, A. M.; Martin, C. R.; Shustova, N. B. Photochemistry and photophysics of MOFs: Steps towards MOF-based sensing enhancements. Chem. Soc. Rev. 2018, 47, 4710–4728.

    CAS  Google Scholar 

  59. Yanai, N.; Kimizuka, N. Recent emergence of photon upconversion based on triplet energy migration in molecular assemblies. Chem. Commun. 2016, 52, 5354–5370.

    CAS  Google Scholar 

  60. Dhakshinamoorthy, A.; Asiri, A. M.; García, H. Metal-organic framework (MOF) compounds: Photocatalysts for redox reactions and solar fuel production. Angew. Chem., Int. Ed. 2016, 55, 5414–5445.

    CAS  Google Scholar 

  61. Rice, A. M.; Martin, C. R.; Galitskiy, V. A.; Berseneva, A. A.; Leith, G. A.; Shustova, N. B. Photophysics modulation in photoswitchable metal-organic frameworks. Chem. Rev., in press, DOI: https://doi.org/10.1021/acs.chemrev.9b00350.

  62. Shustova, N. B.; McCarthy, B. D.; Dincà, M. Turn-on fluorescence in tetraphenylethylene-based metal-organic frameworks: An alternative to aggregation-induced emission. J. Am. Chem. Soc. 2011, 133, 20126–20129.

    CAS  Google Scholar 

  63. Williams, D. E.; Dolgopolova, E. A.; Pellechia, P. J.; Palukoshka, A.; Wilson, T. J.; Tan, R.; Maier, J. M.; Greytak, A. B.; Smith, M. D.; Krause, J. A. et al. Mimic of the green fluorescent protein β-barrel: Photophysics and dynamics of confined chromophores defined by a rigid porous scaffold. J. Am. Chem. Soc. 2015, 137, 2223–2226.

    CAS  Google Scholar 

  64. Liu, J. J.; Shan, Y. B; Fan, C. R.; Lin, M. J.; Huang, C. C.; Dai, W. X. Encapsulating naphthalene in an electron-deficient MOF to enhance fluorescence for organic amines sensing. Inorg. Chem. 2016, 55, 3680–3684.

    CAS  Google Scholar 

  65. Yan, D. P.; Tang, Y. Q.; Lin, H. Y.; Wang, D. Tunable two-color luminescence and host-guest energy transfer of fluorescent chromophores encapsulated in metal-organic frameworks. Sci. Rep. 2015, 4, 4337.

    Google Scholar 

  66. Shustova, N. B.; Cozzolino, A. F.; Reineke, S.; Baldo, M.; Dincă, M. Selective turn-on ammonia sensing enabled by high-temperature fluorescence in metal-organic frameworks with open metal sites. J. Am. Chem. Soc. 2013, 135, 13326–13329.

    CAS  Google Scholar 

  67. Yu, J. C.; Cui, Y. J.; Wu, C. D.; Yang, Y.; Wang, Z. Y.; O’Keeffe, M.; Chen, B. L.; Qian, G. D. Second-order nonlinear optical activity induced by ordered dipolar chromophores confined in the pores of an anionic metal-organic framework. Angew. Chem., Int. Ed. 2012, 51, 10542–10545.

    CAS  Google Scholar 

  68. Jiao, J. M.; Kang, J. X.; Ma, Y. N.; Zhao, Q. Y.; Li, H. Z.; Zhang, J.; Chen, X. N. Aggregation-induced fluorescence of carbazole and o-carborane based organic fluorophore. Front. Chem. 2019, 7, 768.

    CAS  Google Scholar 

  69. Li, P.; Guo, M. Y.; Yin, X. M.; Gao, L. L.; Yang, S. L.; Bu, R.; Gong, T.; Gao, E. Q. Interpenetration-enabled photochromism and fluorescence photomodulation in a metal-organic framework with the thiazolothiazole extended viologen fluorophore. Inorg. Chem. 2019, 58, 14167–14174.

    CAS  Google Scholar 

  70. Takashima, Y.; Martínez, V. M.; Furukawa, S.; Kondo, M.; Shimomura, S.; Uehara, H.; Nakahama, M.; Sugimoto, K.; Kitagawa, S. Molecular decoding using luminescence from an entangled porous framework. Nat. Commun. 2011, 2, 168.

    Google Scholar 

  71. Dolgopolova, E. A.; Moore, T. M.; Fellows, W. B.; Smith, M. D.; Shustova, N. B. Photophysics of GFP-related chromophores imposed by a scaffold design. Dalt. Trans. 2016, 45, 9884–9891.

    CAS  Google Scholar 

  72. Pan, M.; Zhu, Y. X.; Wu, K.; Chen, L.; Hou, Y. J.; Yin, S. Y.; Wang, H. P.; Fan, Y. N.; Su, C. Y. Epitaxial growth of hetero-Ln-MOF hierarchical single crystals for domain- and orientation-controlled multicolor luminescence 3D coding capability. Angew. Chem., Int. Ed. 2017, 56, 14582–14586.

    CAS  Google Scholar 

  73. Meinardi, F.; Ballabio, M.; Yanai, N.; Kimizuka, N.; Bianchi, A.; Mauri, M.; Simonutti, R.; Ronchi, A.; Campione, M.; Monguzzi, A. Quasi-thresholdless photon upconversion in metal-organic framework nanocrystals. Nano Lett. 2019, 19, 2169–2177.

    CAS  Google Scholar 

  74. Park, J.; Xu, M.; Li, F. Y.; Zhou, H. C. 3D long-range triplet migration in a water-stable metal-organic framework for upconversion-based ultralow-power in vivo imaging. J. Am. Chem. Soc. 2018, 140, 5493–5499.

    CAS  Google Scholar 

  75. Medishetty, R.; Nemec, L.; Nalla, V.; Henke, S.; Samoc, M.; Reuter, K.; Fischer, R. A. Multi-photon absorption in metal-organic frameworks. Angew. Chem., Int. Ed. 2017, 56, 14743–14748.

    CAS  Google Scholar 

  76. Chen, Z. H.; Gallo, G.; Sawant, V. A.; Zhang, T. X.; Zhu, M. L.; Liang, L. L.; Chanthapally, A.; Bolla, G; Quah, H. S.; Liu, X. G et al. Giant enhancement of second harmonic generation accompanied by the structural transformation of 7-fold to 8-fold interpenetrated metal-organic frameworks (MOFs). Angew. Chem., Int. Ed. 2020, 59, 833–838.

    CAS  Google Scholar 

  77. Wang, M. L.; Fu, C.; Li, L.; Zhang, H. A 2D photochromic zinc-based metal-organic framework with naphthalene diimide-type chromophore. Inorg. Chem. Commun. 2018, 94, 142–145.

    CAS  Google Scholar 

  78. Kreno, L. E.; Leong, K.; Farha, O. K.; Allendorf, M.; Van Duyne, R. P.; Hupp, J. T. Metal-organic framework materials as chemical sensors. Chem. Rev. 2012, 112, 1105–1125.

    CAS  Google Scholar 

  79. Peng, Q.; Niu, Y. L.; Deng, C. M.; Shuai, Z. G. Vibration correlation function formalism of radiative and non-radiative rates for complex molecules. Chem. Phys. 2010, 370, 215–222.

    CAS  Google Scholar 

  80. Shustova, N. B.; Ong, T. C.; Cozzolino, A. F.; Michaelis, V. K.; Griffin, R. G.; Dincă, M. Phenyl ring dynamics in a tetraphenylethylene-bridged metal-organic framework: Implications for the mechanism of aggregation-induced emission. J. Am. Chem. Soc. 2012, 134, 15061–15070.

    CAS  Google Scholar 

  81. Yang, C.; Chen, K.; Chen, M.; Hu, X. X.; Huan, S. Y.; Chen, L. L.; Song, G. S.; Zhang, X. B. Nanoscale metal-organic framework based two-photon sensing platform for bioimaging in live tissue. Anal. Chem. 2019, 91, 2727–2733.

    CAS  Google Scholar 

  82. Wang, Z. Y.; Wang, Z.; Lin, B. J.; Hu, X. F.; Wei, Y. F.; Zhang, C. K.; An, B.; Wang, C.; Lin, W. B. Warm-white-light-emitting diode based on a dye-loaded metal-organic framework for fast white-light communication. ACS Appl. Mater. Interfaces 2017, 9, 35253–35259.

    CAS  Google Scholar 

  83. Liu, J. X.; Zhou, W. C.; Liu, J. X.; Fujimori, Y.; Higashino, T.; Imahori, H.; Jiang, X.; Zhao, J. J.; Sakurai, T.; Hattori, Y. et al. A new class of epitaxial porphyrin metal-organic framework thin films with extremely high photocarrier generation efficiency: Promising materials for all-solid-state solar cells. J. Mater. Chem. A 2016, 4, 12739–12747.

    CAS  Google Scholar 

  84. Wang, F. M.; Liu, W.; Teat, S. J.; Xu, F.; Wang, H.; Wang, X. L.; An, L. T.; Li, J. Chromophore-immobilized luminescent metal-organic frameworks as potential lighting phosphors and chemical sensors. Chem. Commun. 2016, 52, 10249–10252.

    CAS  Google Scholar 

  85. Cui, Y. J.; Yue, Y. F.; Qian, G. D.; Chen, B. L. Luminescent functional metal-organic frameworks. Chem. Rev. 2012, 112, 1126–1162.

    CAS  Google Scholar 

  86. Haldar, R.; Mazel, A.; Krstic, M.; Zhang, Q.; Jakoby, M.; Howard, I. A.; Richards, B. S.; Jung, N.; Jacquemin, D.; Diring, S. et al. A de novo strategy for predictive crystal engineering to tune excitonic coupling. Nat. Commun. 2019, 10, 2048.

    Google Scholar 

  87. Fakis, M.; Anestopoulos, D.; Giannetas, V.; Persephonis, P. Influence of aggregates and solvent aromaticity on the emission of conjugated polymers. J. Phys. Chem. B 2006, 110, 24897–24902.

    CAS  Google Scholar 

  88. Amrutha, S. R.; Jayakannan, M. Probing the n-stacking induced molecular aggregation in n-conjugated polymers, oligomers, and their blends of p-phenylenevinylenes. J. Phys. Chem. B 2008, 112, 1119–1129.

    CAS  Google Scholar 

  89. Ma, X. F.; Sun, R.; Cheng, J. H.; Liu, J. Y.; Gou, F.; Xiang, H. F.; Zhou, X. G. Fluorescence aggregation-caused quenching versus aggregation-induced emission: A visual teaching technology for undergraduate chemistry students. J. Chem. Educ. 2016, 93, 345–350.

    CAS  Google Scholar 

  90. Yuan, W. Z.; Lu, P.; Chen, S. M.; Lam, J. W. Y.; Wang, Z. M.; Liu, Y.; Kwok, H. S.; Ma, Y. G.; Tang, B. Z. Changing the behavior of chromophores from aggregation-caused quenching to aggregation-induced emission: Development of highly efficient light emitters in the solid state. Adv. Mater. 2010, 22, 2159–2163.

    CAS  Google Scholar 

  91. Huang, M. N.; Yu, R. N.; Xu, K.; Ye, S. X.; Kuang, S.; Zhu, X. H.; Wan, Y. Q. An arch-bridge-type fluorophore for bridging the gap between aggregation-caused quenching (ACQ) and aggregation-induced emission (AIE). Chem. Sci. 2016, 7, 4485–4491.

    CAS  Google Scholar 

  92. Li, Z.; Qin, A. J. Diverge from the norm. Natl. Sci. Rev. 2014, 1, 22–24.

    Google Scholar 

  93. Huang, Y. J.; Xing, J.; Gong, Q. Y.; Chen, L. C.; Liu, G. F.; Yao, C. J.; Wang, Z. R.; Zhang, H. L.; Chen, Z.; Zhang, Q. C. Reducing aggregation caused quenching effect through co-assembly of PAH chromophores and molecular barriers. Nat. Commun. 2019, 10, 169.

    Google Scholar 

  94. Mei, J.; Leung, N. L. C.; Kwok, R. T. K.; Lam, J. W. Y.; Tang, B. Z. Aggregation-induced emission: Together we shine, united we soar! Chem. Rev. 2015, 115, 11718–11940.

    CAS  Google Scholar 

  95. Yamada, H.; Xu, C. H.; Fukazawa, A.; Wakamiya, A.; Yamaguchi, S. Structural modification of silicon-bridged ladder stilbene oligomers and distyrylbenzenes. Macromol. Chem. Phys. 2009, 210, 904–916.

    CAS  Google Scholar 

  96. Wang, C.; Li, Z. Molecular conformation and packing: Their critical roles in the emission performance of mechanochromic fluorescence materials. Mater. Chem. Front. 2017, 1, 2174–2194.

    CAS  Google Scholar 

  97. Yamaguchi, M.; Ito, S.; Hirose, A.; Tanaka, K.; Chujo, Y. Control of aggregation-induced emission versus fluorescence aggregation-caused quenching by bond existence at a single site in boron pyridinoiminate complexes. Mater. Chem. Front. 2017, 1, 1573–1579.

    CAS  Google Scholar 

  98. Luo, J. D.; Xie, Z. L.; Lam, J. W. Y.; Cheng, L.; Chen, H. Y.; Qiu, C. F.; Kwok, H. S.; Zhan, X. W.; Liu, Y. Q.; Zhu, B. B. et al. Aggregation-induced emission of 1-methyl-1,2,3,4,5-pentaphenylsilole. Chem. Commun. 2001, 1740–1741.

    Google Scholar 

  99. Gao, M.; Tang, B. Z. Fluorescent sensors based on aggregation-induced emission: Recent advances and perspectives. ACS Sens. 2017, 2, 1382–1399.

    CAS  Google Scholar 

  100. Hong, Y. N.; Lam, J. W. Y.; Tang, B. Z. Aggregation-induced emission. Chem. Soc. Rev. 2011, 40, 5361–5388.

    CAS  Google Scholar 

  101. Zhao, Z.; Zhang, H. K.; Lam, J. W. Y.; Tang, B. Z. Aggregation-induced emission: New vistas at the aggregate level. Angew. Chem., Int. Ed. 2020, 59, 9888–9907.

    CAS  Google Scholar 

  102. Chen, Y. C.; Lam, J. W. Y.; Kwok, R. T. K.; Liu, B.; Tang, B. Z. Aggregation-induced emission: Fundamental understanding and future developments. Mater. Horiz. 2019, 6, 428–433.

    CAS  Google Scholar 

  103. Wang, H.; Zhao, E. G.; Lam, J. W. Y.; Tang, B. Z. AIE luminogens: Emission brightened by aggregation. Mater. Today 2015, 18, 365–377.

    CAS  Google Scholar 

  104. Ding, D.; Li, K.; Liu, B.; Tang, B. Z. Bioprobes based on AIE fluorogens. Acc. Chem. Res. 2013, 46, 2441–2453.

    CAS  Google Scholar 

  105. Schrimpf, W.; Jiang, J. C.; Ji, Z.; Hirschle, P.; Lamb, D. C.; Yaghi, O. M.; Wuttke, S. Chemical diversity in a metal-organic framework revealed by fluorescence lifetime imaging. Nat. Commun. 2018, 9, 1647.

    Google Scholar 

  106. Zhang, N. Z.; Zhang, D. W.; Zhao, J.; Xia, Z. G. Fabrication of a dual-emitting dye-encapsulated metal-organic framework as a stable fluorescent sensor for metal ion detection. Dalt. Trans. 2019, 48, 6794–6799.

    CAS  Google Scholar 

  107. Ryu, U.; Yoo, J.; Kwon, W.; Choi, K. M. Tailoring nanocrystalline metal-organic frameworks as fluorescent dye carriers for bioimaging. Inorg. Chem. 2017, 56, 12859–12865.

    CAS  Google Scholar 

  108. Maity, K.; Mukherjee, D.; Sen, M.; Biradha, K. Fluorescent dye-based metal-organic framework piezochromic and multicolor-emitting two-dimensional materials for light-emitting devices. ACS Appl. Nano Mater. 2019, 2, 1614–1620.

    CAS  Google Scholar 

  109. Tehrani, M. S.; Zare-Dorabei, R. Highly efficient simultaneous ultrasonic-assisted adsorption of methylene blue and rhodamine B onto metal organic framework MIL-68(Al): Central composite design optimization. RSC Adv. 2016, 6, 27416–27425.

    Google Scholar 

  110. Hassanzadeh, J.; Al Lawati, H. A. J.; Al Lawati, I. Metal-organic framework loaded by rhodamine B as a novel chemiluminescence system for the paper-based analytical devices and its application for total phenolic content determination in food samples. Anal. Chem. 2019, 91, 10631–10639.

    CAS  Google Scholar 

  111. Rowe, J. M.; Soderstrom, E. M.; Zhu, J.; Usov, P. M.; Morris, A. J. Synthesis, characterization, and luminescent properties of two new Zr(IV) metal-organic frameworks based on anthracene derivatives. Can. J. Chem. 2018, 96, 875–880.

    CAS  Google Scholar 

  112. Wu, X. H.; Luo, P.; Wei, Z.; Li, Y. Y.; Huang, R. W.; Dong, X. Y.; Li, K.; Zang, S. Q.; Tang, B. Z. Guest-triggered aggregation-induced emission in silver chalcogenolate cluster metal-organic frameworks. Adv. Sci. 2019, 6, 1801304.

    Google Scholar 

  113. Wei, Z. W.; Gu, Z. Y.; Arvapally, R. K.; Chen, Y. P.; McDougald, R. N.; Ivy, J. F.; Yakovenko, A. A.; Feng, D. W.; Omary, M. A.; Zhou, H. C. Rigidifying fluorescent linkers by metal-organic framework formation for fluorescence blue shift and quantum yield enhancement. J. Am. Chem. Soc. 2014, 136, 8269–8276.

    CAS  Google Scholar 

  114. Yu, L.; Chen, H. X.; Yue, J.; Chen, X. F.; Sun, M. T.; Tan, H.; Asiri, A. M.; Alamry, K. A.; Wang, X. K.; Wang, S. H. Metal-organic framework enhances aggregation-induced fluorescence of chlortetracycline and the application for detection. Anal. Chem. 2019, 91, 5913–5921.

    CAS  Google Scholar 

  115. Rouhani, F.; Morsali, A.; Retailleau, P. Simple one-pot preparation of a rapid response AIE fluorescent metal-organic framework. ACS Appl. Mater. Interfaces 2018, 10, 36259–36266.

    CAS  Google Scholar 

  116. Wang, A. N.; Fan, R. Q.; Wang, P.; Fang, R.; Hao, S.; Zhou, X. S.; Zheng, X. B.; Yang, Y. L. Research on the mechanism of aggregation-induced emission through supramolecular metal-organic frameworks with mechanoluminescent properties and application in press-jet printing. Inorg. Chem. 2017, 56, 12881–12892.

    CAS  Google Scholar 

  117. Du, T. Y.; Jiang, H.; Wang, X. M. The effect of AIE and ACQ on MOFs’ sensing performance. Inorg. Chem. Commun. 2019, 107, 107452.

    CAS  Google Scholar 

  118. Zhang, M.; Feng, G. X.; Song, Z. G.; Zhou, Y. P.; Chao, H. Y.; Yuan, D. Q.; Tan, T. T. Y.; Guo, Z. G.; Hu, Z. G.; Tang, B. Z. et al. Two-dimensional metal-organic framework with wide channels and responsive turn-on fluorescence for the chemical sensing of volatile organic compounds. J. Am. Chem. Soc. 2014, 136, 7241–7244.

    CAS  Google Scholar 

  119. Choi, S.; Lee, H. E.; Ryu, C. H.; Lee, J.; Lee, J.; Yoon, M.; Kim, Y.; Park, M. H.; Lee, K. M.; Kim, M. Synthesis of o-carborane-functionalized metal-organic frameworks through ligand exchanges for aggregation-induced emission in the solid state. Chem. Commun. 2019, 55, 11844–11847.

    CAS  Google Scholar 

  120. Wang, F. M.; Zhou, L.; Lustig, W. P.; Hu, Z. C.; Li, J. F.; Hu, B. X.; Chen, L. Z.; Li, J. Highly luminescent metal-organic frameworks based on an aggregation-induced emission ligand as chemical sensors for nitroaromatic compounds. Cryst. Growth Des. 2018, 18, 5166–5173.

    CAS  Google Scholar 

  121. Hu, Z. C.; Huang, G. X.; Lustig, W. P.; Wang, F. M.; Wang, H.; Teat, S. J.; Banerjee, D.; Zhang, D. Q.; Li, J. Achieving exceptionally high luminescence quantum efficiency by immobilizing an AIE molecular chromophore into a metal-organic framework. Chem. Commun. 2015, 51, 3045–3048.

    CAS  Google Scholar 

  122. Xiong, J. B.; Qian, X. D.; Zhao, L. L.; Xu, J. L. A fluorescent responsive tetraphenylethene based metal-organic framework. Inorg. Chem. Commun. 2019, 105, 20–25.

    CAS  Google Scholar 

  123. Yin, H. Q.; Wang, X. Y.; Yin, X. B. Rotation restricted emission and antenna effect in single metal-organic frameworks. J. Am. Chem. Soc. 2019, 141, 15166–15173.

    CAS  Google Scholar 

  124. Cai, Y. J.; Du, L. L.; Samedov, K.; Gu, X. G.; Qi, F.; Sung, H. H. Y.; Patrick, B. O.; Yan, Z. P.; Jiang, X. F.; Zhang, H. K. et al. Deciphering the working mechanism of aggregation-induced emission of tetraphenylethylene derivatives by ultrafast spectroscopy. Chem. Sci. 2018, 9, 4662–4670.

    CAS  Google Scholar 

  125. Baysec, S.; Preis, E.; Allard, S.; Scherf, U. Very high solid state photoluminescence quantum yields of poly(tetraphenylethylene) derivatives. Macromol. Rapid Commun. 2016, 37, 1802–1806.

    CAS  Google Scholar 

  126. Iasilli, G.; Battisti, A.; Tantussi, F.; Fuso, F.; Allegrini, M.; Ruggeri, G.; Pucci, A. Aggregation-induced emission of tetraphenylethylene in styrene-based polymers. Macromol. Chem. Phys. 2014, 215, 499–506.

    CAS  Google Scholar 

  127. Dong, W. Y.; Ma, Z. H.; Chen, P.; Duan, Q. Carbazole and tetraphenylethylene based AIE-active conjugated polymer for highly sensitive TNT detection. Mater. Lett. 2019, 236, 480–482.

    CAS  Google Scholar 

  128. Xu, K.; Yu, B.; Li, Y. Y.; Su, H. F.; Wang, B. N.; Sun, K.; Liu, Y. Y.; Peng, Q. C.; Hou, H. W.; Li, K. Photo-induced free radical production in a tetraphenylethylene ligand-based metal-organic framework. Chem. Commun. 2018, 54, 12942–12945.

    CAS  Google Scholar 

  129. Wu, X. X.; Fu, H. R.; Han, M. L.; Zhou, Z.; Ma, L. F. Tetraphenylethylene immobilized metal-organic frameworks: Highly sensitive fluorescent sensor for the detection of Cr2O72− and nitroaromatic explosives. Cryst. Growth Des. 2017, 17, 6041–6048.

    CAS  Google Scholar 

  130. Ma, L.; Feng, X.; Wang, S.; Wang, B. Recent advances in AIEgen-based luminescent metal-organic frameworks and covalent organic frameworks. Mater. Chem. Front. 2017, 1, 2474–2486.

    CAS  Google Scholar 

  131. Liu, X. Y.; Li, Y.; Tsung, C. K.; Li, J. Encapsulation of yellow phosphors into nanocrystalline metal-organic frameworks for blue-excitable white light emission. Chem. Commun. 2019, 55, 10669–10672.

    CAS  Google Scholar 

  132. Xing, G. C.; Feng, Y. X.; Gao, Z. Y.; Tao, M. X.; Wang, H. Q.; Wei, Y.; Molokeev, M. S.; Li, G. G. A novel red-emitting La2CaHfO6: Mn4+ phosphor based on double perovskite structure for pc-WLEDs lighting. CrystEngComm 2019, 21, 3605–3612.

    CAS  Google Scholar 

  133. Fu, Y. B.; Wang, X.; Peng, M. Y. Tunable photoluminescence from YTaO4: Bi3+ for ultraviolet converted pc-WLED with high chromatic stability. J. Mater. Chem. C 2020, 8, 6079–6085.

    CAS  Google Scholar 

  134. Li, G. G.; Tian, Y.; Zhao, Y.; Lin, J. Recent progress in luminescence tuning of Ce3+ and Eu2+-activated phosphors for pc-WLEDs. Chem. Soc. Rev. 2015, 44, 8688–8713.

    CAS  Google Scholar 

  135. Yu, L.; Wang, H.; Liu, W.; Teat, S. J.; Li, J. Blue-light-excitable, quantum yield enhanced, yellow-emitting, zirconium-based metal-organic framework phosphors formed by immobilizing organic chromophores. Cryst. Growth Des. 2019, 19, 6850–6854.

    CAS  Google Scholar 

  136. Shen, C. Y.; Zhong, C.; Ming, J. Z. YAG:Ce3+, Gd3+ nano-phosphor for white light emitting diodes. J. Exp. Nanosci. 2013, 8, 54–60.

    CAS  Google Scholar 

  137. Zhao, Y. Y.; Xu, H. R.; Zhang, X. Y.; Zhu, G. S.; Yan, D. L.; Yu, A. B. Facile synthesis of YAG:Ce3+ thick films for phosphor converted white light emitting diodes. J. Eur. Ceram. Soc. 2015, 35, 3761–3764.

    CAS  Google Scholar 

  138. Dolgopolova, E. A.; Rice, A. M.; Smith, M. D.; Shustova, N. B. Photophysics, dynamics, and energy transfer in rigid mimics of GFP-based systems. Inorg. Chem. 2016, 55, 7257–7264.

    CAS  Google Scholar 

  139. Follenius-Wund, A.; Bourotte, M.; Schmitt, M.; Iyice, F.; Lami, H.; Bourguignon, J. J.; Haiech, J.; Pigault, C. Fluorescent derivatives of the GFP chromophore give a new insight into the GFP fluorescence process. Biophys. J. 2003, 85, 1839–1850.

    CAS  Google Scholar 

  140. Dolgopolova, E. A.; Moore, T. M.; Ejegbavwo, O. A.; Pellechia, P. J.; Smith, M. D.; Shustova, N. B. A metal-organic framework as a flask: Photophysics of confined chromophores with a benzylidene imidazolinone core. Chem. Commun. 2017, 53, 7361–7364.

    CAS  Google Scholar 

  141. Meech, S. R. Excited state reactions in fluorescent proteins. Chem. Soc. Rev. 2009, 38, 2922–2934.

    CAS  Google Scholar 

  142. Jancsó, A.; Kovács, E.; Cseri, L.; Rózsa, B. J.; Galbács, G.; Csizmadia, I. G.; Mucsi, Z. Synthesis and spectroscopic characterization of novel GFP chromophore analogues based on aminoimidazolone derivatives. Spectrochim. Acta. A. Mol. Biomol. Spectrosc. 2019, 218, 161–170.

    Google Scholar 

  143. Petkova, I.; Dobrikov, G.; Banerji, N.; Duvanel, G.; Perez, R.; Dimitrov, V.; Nikolov, P.; Vauthey, E. Tuning the excited-state dynamics of GFP-inspired imidazolone derivatives. J. Phys. Chem. A 2010, 114, 10–20.

    CAS  Google Scholar 

  144. Gutiérrez, S.; Martínez-López, D.; Morón, M.; Sucunza, D.; Sampedro, D.; Domingo, A.; Salgado, A.; Vaquero, J. J. Highly fluorescent green fluorescent protein chromophore analogues made by decorating the imidazolone ring. Chem.—Eur. J. 2015, 21, 18758–18763.

    Google Scholar 

  145. Conyard, J.; Heisler, I. A.; Chan, Y.; Bulman Page, P. C.; Meech, S. R.; Blancafort, L. A new twist in the photophysics of the GFP chromophore: A volume-conserving molecular torsion couple. Chem. Sci. 2018, 9, 1803–1812.

    CAS  Google Scholar 

  146. Bourotte, M.; Schmitt, M.; Follenius-Wund, A.; Pigault, C.; Haiech, J.; Bourguignon, J. J. Fluorophores related to the green fluorescent protein. Tetrahedron Lett. 2004, 45, 6343–6348.

    CAS  Google Scholar 

  147. Niwa, H.; Inouye, S.; Hirano, T.; Matsuno, T.; Kojima, S.; Kubota, M.; Ohashi, M.; Tsuji, F. I. Chemical nature of the light emitter of the Aequorea green fluorescent protein. Proc. Natl. Acad. Sci. USA 1996, 93, 13617–13622.

    CAS  Google Scholar 

  148. Nielsen, M. B.; Andersen, L. H.; Rocha-Rinza, T. Absorption tuning of the green fluorescent protein chromophore: Synthesis and studies of model compounds. Monatsh. Chem. 2011, 142, 709–715.

    CAS  Google Scholar 

  149. Dolgopolova, E. A.; Berseneva, A. A.; Faillace, M. S.; Ejegbavwo, O. A.; Leith, G. A.; Choi, S. W.; Gregory, H. N.; Rice, A. M.; Smith, M. D.; Chruszcz, M. et al. Confinement-driven photophysics in cages, covalent-organic frameworks, metal-organic frameworks, and DNA. J. Am. Chem. Soc. 2020, 142, 4769–4783.

    CAS  Google Scholar 

  150. McCapra, F.; Razavi, Z.; Neary, A. P. The fluorescence of the chromophore of the green fluorescent protein of Aequorea and Renilla. J. Chem. Soc. Chem. Commun. 1988, 790–791.

    Google Scholar 

  151. Wanderley, M. M.; Wang, C.; Wu, C. D.; Lin, W. B. A chiral porous metal-organic framework for highly sensitive and enantioselective fluorescence sensing of amino alcohols. J. Am. Chem. Soc. 2012, 134, 9050–9053.

    CAS  Google Scholar 

  152. Lustig, W. P.; Teat, S. J.; Li, J. Improving LMOF luminescence quantum yield through guest-mediated rigidification. J. Mater. Chem. C 2019, 7, 14739–14744.

    CAS  Google Scholar 

  153. Pan, M.; Liao, W. M.; Yin, S. Y.; Sun, S. S.; Su, C. Y. Single-phase white-light-emitting and photoluminescent color-tuning coordination assemblies. Chem. Rev. 2018, 118, 8889–8935.

    CAS  Google Scholar 

  154. Sun, C. Y.; Wang, X. L.; Zhang, X.; Qin, C.; Li, P.; Su, Z. M.; Zhu, D. X.; Shan, G. G.; Shao, K. Z.; Wu, H. et al. Efficient and tunable white-light emission of metal-organic frameworks by iridium-complex encapsulation. Nat. Commun. 2013, 4, 2717.

    Google Scholar 

  155. Huh, S.; Kim, S. J.; Kim, Y. Porphyrinic metal-organic frameworks from custom-designed porphyrins. CrystEngComm 2016, 18, 345–368.

    CAS  Google Scholar 

  156. Hao, Y. Q.; Chen, S.; Zhou, Y. L.; Zhang, Y. T.; Xu, M. T. Recent progress in metal-organic framework (MOF) based luminescent chemodosimeters. Nanomaterials 2019, 9, 974.

    CAS  Google Scholar 

  157. Liu, Y.; Dong, H. Y.; Wang, K.; Gao, Z. H.; Zhang, C. H.; Liu, X. L.; Zhao, Y. S.; Hu, F. Q. Suppressing nonradiative processes of organic dye with metal-organic framework encapsulation toward near-infrared solid-state microlasers. ACS Appl. Mater. Interfaces 2018, 10, 35455–35461.

    CAS  Google Scholar 

  158. Wang, Z.; Zhu, C. Y.; Mo, J. T.; Fu, P. Y.; Zhao, Y. W.; Yin, S. Y.; Jiang, J. J.; Pan, M.; Su, C. Y. White-light emission from dual-way photon energy conversion in a dye-encapsulated metal-organic framework. Angew. Chem., Int. Ed. 2019, 58, 9752–9757.

    CAS  Google Scholar 

  159. Chen, Y. F.; Yu, B.; Cui, Y. D.; Xu, S. J.; Gong, J. B. Core-shell structured cyclodextrin metal-organic frameworks with hierarchical dye encapsulation for tunable light emission. Chem. Mater. 2019, 31, 1289–1295.

    CAS  Google Scholar 

  160. Nie, H.; Hu, K.; Cai, Y. J.; Peng, Q.; Zhao, Z. J.; Hu, R. R.; Chen, J. W.; Su, S. J.; Qin, A. J.; Tang, B. Z. Tetraphenylfuran: Aggregation-induced emission or aggregation-caused quenching? Mater. Chem. Front. 2017, 1, 1125–1129.

    CAS  Google Scholar 

  161. Liu, X. Y.; Xing, K.; Li, Y.; Tsung, C. K.; Li, J. Three models to encapsulate multicomponent dyes into nanocrystal pores: A new strategy for generating high-quality white light. J. Am. Chem. Soc. 2019, 141, 14807–14813.

    CAS  Google Scholar 

  162. Ji, G F.; Wang, J. Z.; Gao, X. C.; Liu, J. J.; Guan, W. H.; Liu, H. T.; Liu, Z. L. Hypersensitive self-referencing detection traces of water in ethyl alcohol by dual-emission lanthanide metal-organic frameworks. Eur. J. Inorg. Chem. 2018, 2018, 1998–2003.

    CAS  Google Scholar 

  163. Hu, X. L.; Qin, C.; Wang, X. L.; Shao, K. Z.; Su, Z. M. A luminescent dye@MOF as a dual-emitting platform for sensing explosives. Chem. Commun. 2015, 51, 17521–17524.

    CAS  Google Scholar 

  164. Xia, T. F.; Cui, Y. J.; Yang, Y.; Qian, G. D. Highly stable mixed-lanthanide metal-organic frameworks for self-referencing and colorimetric luminescent pH sensing. ChemNanoMat 2017, 3, 51–57.

    CAS  Google Scholar 

  165. Jameson, D. M.; Ross, J. A. Fluorescence polarization/anisotropy in diagnostics and imaging. Chem. Rev. 2010, 110, 2685–2708.

    CAS  Google Scholar 

  166. Gijsbers, A.; Nishigaki, T.; Sánchez-Puig, N. Fluorescence anisotropy as a tool to study protein-protein interactions. J. Vis. Exp. 2016, 54640.

    Google Scholar 

  167. Swonger, K. N.; Robinson, A. S. Using fluorescence anisotropy for ligand binding kinetics of membrane proteins. Curr. Protoc. Protein Sci. 2018, 93, e63.

  168. Clayton, A. H. A.; Hanley, Q. S.; Arndt-Jovin, D. J.; Subramaniam, V.; Jovin, T. M. Dynamic fluorescence anisotropy imaging microscopy in the frequency domain (rFLIM). Biophys. J. 2002, 83, 1631–1649.

    CAS  Google Scholar 

  169. Vinegoni, C.; Dubach, J. M.; Feruglio, P. F.; Weissleder, R. Two-photon fluorescence anisotropy microscopy for imaging and direct measurement of intracellular drug target engagement. IEEE J. Sel. Top. Quantum Electron. 2016, 22, 6801607.

    Google Scholar 

  170. Chen, J.; Liu, J. W.; Chen, X. G.; Qiu, H. D. Recent progress in nanomaterial-enhanced fluorescence polarization/anisotropy sensors. Chin. Chem. Lett. 2019, 30, 1575–1580.

    CAS  Google Scholar 

  171. Bur, A. J.; Roth, S. C.; Thomas, C. L. Fluorescence anisotropy sensor and its application to polymer processing and characterization. Rev. Sci. Instrum. 2000, 71, 1516–1523.

    CAS  Google Scholar 

  172. Wang, H.; Vagin, S. I.; Lane, S.; Lin, W.; Shyta, V.; Heinz, W. R.; van Dyck, C.; Bergren, A. J.; Gardner, K.; Rieger, B. et al. Metal-organic framework with color-switching and strongly polarized emission. Chem. Mater. 2019, 31, 5816–5823.

    CAS  Google Scholar 

  173. He, H. J.; Ma, E.; Cui, Y. J.; Yu, J. C.; Yang, Y.; Song, T.; Wu, C. D.; Chen, X. Y.; Chen, B. L.; Qian, G. D. Polarized three-photon-pumped laser in a single MOF microcrystal. Nat. Commun. 2016, 7, 11087.

    CAS  Google Scholar 

  174. Guo, J. F.; Li, C. M.; Hu, X. L.; Huang, C. Z.; Li, Y. F. Metal-organic framework MIL-101 enhanced fluorescence anisotropy for sensitive detection of DNA. RSC Adv. 2014, 4, 9379–9382.

    CAS  Google Scholar 

  175. Yan, D. P.; Gao, R.; Wei, M.; Li, S. D.; Lu, J.; Evans, D. G.; Duan, X. Mechanochemical synthesis of a fluorenone-based metal organic framework with polarized fluorescence: An experimental and computational study. J. Mater. Chem. C 2013, 1, 997–1004.

    CAS  Google Scholar 

  176. Chen, C. X.; Wei, Z. W.; Fan, Y. N.; Su, P. Y.; Ai, Y. Y.; Qiu, Q. F.; Wu, K.; Yin, S. Y.; Pan, M.; Su, C. Y. Visualization of anisotropic and stepwise piezofluorochromism in an MOF single crystal. Chem 2018, 4, 2658–2669.

    CAS  Google Scholar 

  177. Yan, D. P.; Lloyd, G. O.; Delori, A.; Jones, W.; Duan, X. Tuning fluorescent molecules by inclusion in a metal-organic framework: An experimental and computational study. ChemPlusChem 2012, 77, 1112–1118.

    CAS  Google Scholar 

  178. Yu, J. C.; Cui, Y. J.; Xu, H.; Yang, Y.; Wang, Z. Y.; Chen, B. L.; Qian, G. D. Confinement of pyridinium hemicyanine dye within an anionic metal-organic framework for two-photon-pumped lasing. Nat. Commun. 2013, 4, 2719.

    Google Scholar 

  179. Wen, S. H.; Zhou, J. J.; Schuck, P. J.; Suh, Y. D.; Schmidt, T. W.; Jin, D. Y. Future and challenges for hybrid upconversion nanosystems. Nat. Photonics 2019, 13, 828–838.

    CAS  Google Scholar 

  180. Zhou, J.; Liu, Z.; Li, F. Y. Upconversion nanophosphors for small-animal imaging. Chem. Soc. Rev. 2012, 41, 1323–1349.

    CAS  Google Scholar 

  181. Yu, J. C.; Cui, Y. J.; Wu, C. D.; Yang, Y.; Chen, B. L.; Qian, G. D. Two-photon responsive metal-organic framework. J. Am. Chem. Soc. 2015, 137, 4026–4029.

    CAS  Google Scholar 

  182. Zhou, J.; Liu, Q.; Feng, W.; Sun, Y.; Li, F. Y. Upconversion luminescent materials: Advances and applications. Chem. Rev. 2015, 115, 395–465.

    CAS  Google Scholar 

  183. Sun, Q. C.; Ding, Y. C.; Sagar, D. M.; Nagpal, P. Photon upconversion towards applications in energy conversion and bioimaging. Prog. Surf. Sci. 2017, 92, 281–316.

    CAS  Google Scholar 

  184. Hou, Z. Y.; Deng, K. R.; Li, C. X.; Deng, X. R.; Lian, H. Z.; Cheng, Z. Y.; Jin, D. Y.; Lin, J. 808 nm Light-triggered and hyaluronic acid-targeted dual-photosensitizers nanoplatform by fully utilizing Nd3+-sensitized upconversion emission with enhanced anti-tumor efficacy. Biomaterials 2016, 101, 32–46.

    CAS  Google Scholar 

  185. Deng, R. R.; Qin, F.; Chen, R. F.; Huang, W.; Hong, M. H.; Liu, X. G Temporal full-colour tuning through non-steady-state upconversion. Nat. Nanotechnol. 2015, 10, 237–242.

    CAS  Google Scholar 

  186. Monguzzi, A.; Tubino, R.; Meinardi, F. Upconversion-induced delayed fluorescence in multicomponent organic systems: Role of Dexter energy transfer. Phys. Rev. B 2008, 77, 155122.

    Google Scholar 

  187. Monguzzi, A.; Tubino, R.; Hoseinkhani, S.; Campione, M.; Meinardi, F. Low power, non-coherent sensitized photon up-conversion: Modelling and perspectives. Phys. Chem. Chem. Phys. 2012, 14, 4322–4332.

    CAS  Google Scholar 

  188. Singh-Rachford, T. N.; Lott, J.; Weder, C.; Castellano, F. N. Influence of temperature on low-power upconversion in rubbery polymer blends. J. Am. Chem. Soc. 2009, 131, 12007–12014.

    CAS  Google Scholar 

  189. Islangulov, R. R.; Lott, J.; Weder, C.; Castellano, F. N. Noncoherent low-power upconversion in solid polymer films. J. Am. Chem. Soc. 2007, 129, 12652–12653.

    CAS  Google Scholar 

  190. Kim, J. H.; Deng, F.; Castellano, F. N.; Kim, J. H. High efficiency low-power upconverting soft materials. Chem. Mater. 2012, 24, 2250–2252.

    CAS  Google Scholar 

  191. Monguzzi, A.; Bianchi, F.; Bianchi, A.; Mauri, M.; Simonutti, R.; Ruffo, R.; Tubino, R.; Meinardi, F. High efficiency up-converting single phase elastomers for photon managing applications. Adv. Energy Mater. 2013, 3, 680–686.

    CAS  Google Scholar 

  192. Galli, R.; Uckermann, O.; Andresen, E. F.; Geiger, K. D.; Koch, E.; Schackert, G.; Steiner, G.; Kirsch, M. Intrinsic indicator of photodamage during label-free multiphoton microscopy of cells and tissues. PLoS One 2014, 9, e110295.

    Google Scholar 

  193. Wilmink, G. J.; Opalenik, S. R.; Beckham, J. T.; Davidson, J. M.; Jansen, E. D. Assessing laser-tissue damage with bioluminescent imaging. J. Biomed. Opt. 2006, 11, 041114.

    Google Scholar 

  194. Lin, J. X.; Hu, X. Q.; Zhang, P.; Van Rynbach, A.; Beratan, D. N.; Kent, C. A.; Mehl, B. P.; Papanikolas, J. M.; Meyer, T. J.; Lin, W. B. et al. Triplet excitation energy dynamics in metal-organic frameworks. J. Phys. Chem. C. 2013, 117, 22250–22259.

    CAS  Google Scholar 

  195. Wu, C.; Djurovich, P. I.; Thompson, M. E. Study of energy transfer and triplet exciton diffusion in hole-transporting host materials. Adv. Funct. Mater. 2009, 19, 3157–3164.

    CAS  Google Scholar 

  196. Li, X.; Lee Tang, M. Triplet transport in thin films: Fundamentals and applications. Chem. Commun. 2017, 53, 4429–4440.

    CAS  Google Scholar 

  197. Narushima, K.; Kiyota, Y.; Mori, T.; Hirata, S.; Vacha, M. Suppressed triplet exciton diffusion due to small orbital overlap as a key design factor for ultralong-lived room-temperature phosphorescence in molecular crystals. Adv. Mater. 2019, 31, 1807268.

    Google Scholar 

  198. Rowe, J. M.; Zhu, J.; Soderstrom, E. M.; Xu, W. Q.; Yakovenko, A.; Morris, A. J. Sensitized photon upconversion in anthracene-based zirconium metal-organic frameworks. Chem. Commun. 2018, 54, 7798–7801.

    CAS  Google Scholar 

  199. Adams, M.; Kozlowska, M.; Baroni, N.; Oldenburg, M.; Ma, R.; Busko, D.; Turshatov, A.; Emandi, G.; Senge, M. O.; Haldar, R. et al. Highly efficient one-dimensional triplet exciton transport in a palladium-porphyrin-based surface-anchored metal-organic framework. ACS Appl. Mater. Interfaces. 2019, 11, 15688–15697.

    CAS  Google Scholar 

  200. Nandi, A.; Manna, B.; Ghosh, R. Interplay of exciton-excimer dynamics in 9,10-diphenylanthracene nanoaggregates and thin films revealed by time-resolved spectroscopic studies. Phys. Chem. Chem. Phys. 2019, 21, 11193–11202.

    CAS  Google Scholar 

  201. Yuan, S.; Lu, W. G.; Chen, Y. P.; Zhang, Q.; Liu, T. F.; Feng, D. W.; Wang, X.; Qin, J. S.; Zhou, H. C. Sequential linker installation: Precise placement of functional groups in multivariate metal-organic frameworks. J. Am. Chem. Soc. 2015, 137, 3177–3180.

    CAS  Google Scholar 

  202. Ejegbavwo, O. A.; Martin, C. R.; Olorunfemi, O. A.; Leith, G. A.; Ly, R. T.; Rice, A. M.; Dolgopolova, E. A.; Smith, M. D.; Karakalos, S. G.; Birkner, N. et al. Thermodynamics and electronic properties of heterometallic multinuclear actinide-containing metal-organic frameworks with “structural memory”. J. Am. Chem. Soc. 2019, 141, 11628–11640.

    CAS  Google Scholar 

  203. Oldenburg, M.; Turshatov, A.; Busko, D.; Wollgarten, S.; Adams, M.; Baroni, N.; Welle, A.; Redel, E.; Wöll, C.; Richards, B. S. et al. Photon upconversion at crystalline organic-organic heterojunctions. Adv. Mater. 2016, 28, 8477–8482.

    CAS  Google Scholar 

  204. Ahmad, S.; Liu, J. X.; Gong, C. H.; Zhao, J. Z.; Sun, L. C. Photon up-conversion via epitaxial surface-supported metal-organic framework thin films with enhanced photocurrent. ACS Appl. Energy Mater. 2018, 1, 249–253.

    CAS  Google Scholar 

  205. Ahmad, S.; Liu, J. X.; Ji, W.; Sun, L. C. Metal-organic framework thin film-based dye sensitized solar cells with enhanced photocurrent. Materials 2018, 11, 1868.

    Google Scholar 

  206. Li, M. X.; Gul, S.; Tian, D.; Zhou, E. L.; Wang, Y. B.; Han, Y. D.; Yin, L. S.; Huang, L. Erbium(III)-based metal-organic frameworks with tunable upconversion emissions. Dalton Trans. 2018, 47, 12868–12872.

    CAS  Google Scholar 

  207. Dong, H.; Sun, L. D.; Yan, C. H. Energy transfer in lanthanide upconversion studies for extended optical applications. Chem. Soc. Rev. 2015, 44, 1608–1634.

    CAS  Google Scholar 

  208. Weng, D. F.; Zheng, X. J.; Jin, L. P. Assembly and upconversion properties of lanthanide coordination polymers based on hexanuclear building blocks with (μ3-OH) bridges. Eur. J. Inorg. Chem. 2006, 2006, 4184–4190.

    Google Scholar 

  209. Weng, D. F.; Zheng, X. J.; Chen, X. B.; Li, L. C.; Jin, L. P. Synthesis, upconversion luminescence and magnetic properties of new lanthanide-organic frameworks with (43)2(46, 66, 83) topology. Eur. J. Inorg. Chem. 2007, 2007, 3410–3415.

    Google Scholar 

  210. Sun, C. Y.; Zheng, X. J.; Chen, X. B.; Li, L. C.; Jin, L. P. Assembly and upconversion luminescence of lanthanide-organic frameworks with mixed acid ligands. Inorg. Chim. Acta 2009, 362, 325–330.

    CAS  Google Scholar 

  211. Zhang, X. D.; Li, B.; Ma, H. P.; Zhang, L. M.; Zhao, H. F. Metal-organic frameworks modulated by doping Er3+ for up-conversion luminescence. ACS Appl. Mater. Interfaces 2016, 8, 17389–17394.

    CAS  Google Scholar 

  212. Dolgopolova, E. A.; Brandt, A. J.; Ejegbavwo, O. A.; Duke, A. S.; Maddumapatabandi, T. D.; Galhenage, R. P.; Larson, B. W.; Reid, O. G.; Ammal, S. C.; Heyden, A. et al. Electronic properties of bimetallic metal-organic frameworks (MOFs): Tailoring the density of electronic states through MOF modularity. J. Am. Chem. Soc. 2017, 139, 5201–5209.

    CAS  Google Scholar 

  213. He, G. S.; Tan, L. S.; Zheng, Q. D.; Prasad, P. N. Multiphoton absorbing materials: Molecular designs, characterizations, and applications. Chem. Rev. 2008, 108, 1245–1330.

    CAS  Google Scholar 

  214. Medishetty, R.; Zareba, J. K.; Mayer, D.; Samoc, M.; Fischer, R. A. Nonlinear optical properties, upconversion and lasing in metal-organic frameworks. Chem. Soc. Rev. 2017, 46, 4976–5004.

    CAS  Google Scholar 

  215. Nathan, V.; Guenther, A. H.; Mitra, S. S. Review of multiphoton absorption in crystalline solids. J. Opt. Soc. Am. B 1985, 2, 294–316.

    CAS  Google Scholar 

  216. Bhawalkar, J. D.; He, G. S.; Prasad, P. N. Nonlinear multiphoton processes in organic and polymeric materials. Rep. Prog. Phys. 1996, 59, 1041–1070.

    CAS  Google Scholar 

  217. Quah, H. S.; Chen, W. Q.; Schreyer, M. K.; Yang, H.; Wong, M. W.; Ji, W.; Vittal, J. J. Multiphoton harvesting metal-organic frameworks. Nat. Commun. 2015, 6, 7954.

    CAS  Google Scholar 

  218. Quah, H. S.; Nalla, V.; Zheng, K. Z.; Lee, C. A.; Liu, X. G.; Vittal, J. J. Tuning two-photon absorption cross section in metal organic frameworks. Chem. Mater. 2017, 29, 7424–7430.

    CAS  Google Scholar 

  219. Gupta, M.; Kottilil, D.; Tomar, K.; Lu, S. B.; Vijayan, C.; Ji, W.; Bharadwaj, P. K. Two-photon absorption and fluorescence in micrometer-sized single crystals of a rhodamine B coordinated metal-organic framework. ACS Appl. Nano Mater. 2018, 1, 5408–5413.

    CAS  Google Scholar 

  220. Xu, C.; Webb, W. W. Measurement of two-photon excitation cross sections of molecular fluorophores with data from 690 to 1050 nm. J. Opt. Soc. Am. B 1996, 13, 481–491.

    CAS  Google Scholar 

  221. Zhang, Y. X.; Li, B. X.; Lin, H.; Ma, Z. J.; Wu, X. T.; Zhu, Q. L. Impressive second harmonic generation response in a novel phase-matchable NLO-active MOF derived from achiral precursors. J. Mater. Chem. C 2019, 7, 6217–6221.

    CAS  Google Scholar 

  222. Huang, X. L.; Li, Q. Y.; Xiao, X.; Jia, S. P.; Li, Y.; Duan, Z. G.; Bai, L.; Yuan, Z.; Li, L.; Lin, Z. H. et al. Nonlinear-optical behaviors of a chiral metal-organic framework comprised of an unusual multioriented double-helix structure. Inorg. Chem. 2018, 57, 6210–6213.

    CAS  Google Scholar 

  223. Song, T.; Yu, J. C.; Cui, Y. J.; Yang, Y.; Qian, G. D. Encapsulation of dyes in metal-organic frameworks and their tunable nonlinear optical properties. Dalton Trans. 2016, 45, 4218–4223.

    CAS  Google Scholar 

  224. Guo, J. S.; Xu, G.; Jiang, X. M.; Zhang, M. J.; Liu, B. W.; Guo, G. C. A highly stable 3D acentric zinc metal-organic framework based on two symmetrical flexible ligands: High second-harmonic-generation efficiency and tunable photoluminescence. Inorg. Chem. 2014, 53, 4278–4280.

    CAS  Google Scholar 

  225. Yang, H.; Sang, R. L.; Xu, X.; Xu, L. An unprecedented 3-D SHG MOF material of silver(I) induced by chiral triple helices. Chem. Commun. 2013, 49, 2909–2911.

    CAS  Google Scholar 

  226. Prasad, S. S.; Sudarsanakumar, M. R.; Dhanya, V. S.; Suma, S.; Kurup, M. R. P. Synthesis and characterization of a prominent NLO active MOF of lead with 1,5-naphthalenedisulfonic acid. J. Mol. Struct. 2018, 1167, 134–141.

    CAS  Google Scholar 

  227. Garai, B.; Mallick, A.; Banerjee, R. Photochromic metal-organic frameworks for inkless and erasable printing. Chem. Sci. 2016, 7, 2195–2200.

    CAS  Google Scholar 

  228. Kawata, S.; Kawata, Y. Three-dimensional optical data storage using photochromic materials. Chem. Rev. 2000, 100, 1777–1788.

    CAS  Google Scholar 

  229. Qin, M.; Huang, Y.; Li, F. Y.; Song, Y. L. Photochromic sensors: A versatile approach for recognition and discrimination. J. Mater. Chem. C 2015, 3, 9265–9275.

    CAS  Google Scholar 

  230. Irie, M.; Fukaminato, T.; Matsuda, K.; Kobatake, S. Photochromism of diarylethene molecules and crystals: Memories, switches, and actuators. Chem. Rev. 2014, 114, 12174–12277.

    CAS  Google Scholar 

  231. Schwartz, H. A.; Ruschewitz, U.; Heinke, L. Smart nanoporous metal-organic frameworks by embedding photochromic molecules-state of the art and future perspectives. Photochem. Photobiol. Sci. 2018, 17, 864–873.

    CAS  Google Scholar 

  232. Williams, D. E.; Martin, C. R.; Dolgopolova, E. A.; Swifton, A.; Godfrey, D. C.; Ejegbavwo, O. A.; Pellechia, P. J.; Smith, M. D.; Shustova, N. B. Flipping the switch: Fast photoisomerization in a confined environment. J. Am. Chem. Soc. 2018, 140, 7611–7622.

    CAS  Google Scholar 

  233. Dolgopolova, E. A.; Galitskiy, V. A.; Martin, C. R.; Gregory, H. N.; Yarbrough, B. J.; Rice, A. M.; Berseneva, A. A.; Ejegbavwo, O. A.; Stephenson, K. S.; Kittikhunnatham, P. et al. Connecting wires: Photoinduced electronic structure modulation in metal-organic frameworks. J. Am. Chem. Soc. 2019, 141, 5350–5358.

    CAS  Google Scholar 

Download references

Acknowledgements

N. B. S. gratefully acknowledges support from the NSF CAREER Award (DMR-1553634) and a Cottrell Scholar Award from the Research Corporation for Science Advancement. N. B. S. also acknowledges support from the Sloan Research Fellowship provided by the Alfred P. Sloan Foundation and the Dreyfus Teaching-Scholar Award supported by the Dreyfus Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natalia B. Shustova.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martin, C.R., Kittikhunnatham, P., Leith, G.A. et al. Let the light be a guide: Chromophore communication in metal-organic frameworks. Nano Res. 14, 338–354 (2021). https://doi.org/10.1007/s12274-020-3017-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-3017-0

Keywords

Navigation