Skip to main content
Log in

Dynamic properties of a flexible metal-organic framework exhibiting a unique “picture frame”-like crystal morphology

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The precise control of the crystal morphology of metal-organic frameworks (MOFs) enables optimization of its adsorptive properties, as well as enables better integration within functional devices. However, the influence of such modifications on the dynamic properties of flexible MOFs is poorly understood. Here, we report the synthesis of a series of Cu2(bdc)2(bpy) (bdc2− = 1,4-benzenedicarboxylate; bpy = 4,4′-bipyridine) crystals having an unusual picture frame-like morphology that results from a restriction in the quantity of bpy pillars added to the reaction mixture during the intercalation of the Cu2(bdc)2(MeOH)2 layers. The width of the frames is found to correlate with the quantity of bpy, and importantly, causes the dynamic properties of the resulting Cu2(bdc)2(bpy) material to vary between rigid, elastic, and shape memory modes. In all, the results demonstrate the potential for the properties of MOFs to be optimized via subtle manipulations in the crystal morphology rather than changes in the overall material composition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhou, H. C.; Long, J. R.; Yaghi, O. M. Introduction to metal-organic frameworks. Chem. Rev. 2012, 112, 673–674.

    Article  CAS  Google Scholar 

  2. Zhou, H. C.; Kitagawa, S. Metal-organic frameworks (MOFs). Chem. Soc. Rev. 2014, 43, 5415–5418.

    Article  CAS  Google Scholar 

  3. Furukawa, S.; Reboul, J.; Diring, S.; Sumida, K.; Kitagawa, S. Structuring of metal-organic frameworks at the mesoscopic/macroscopic scale. Chem. Soc. Rev. 2014, 43, 5700–5734.

    Article  CAS  Google Scholar 

  4. Linder-Patton, O. M.; Rogers, B, T.; Sumida, K. Impact of higher-order structuralization on the adsorptive properties of metal-organic frameworks. Chem. Asian J. 2018, 13, 1979–1991.

    Article  CAS  Google Scholar 

  5. Feng, L.; Wang, K. Y.; Powell, J.; Zhou, H. C. Controllable synthesis of metal-organic frameworks and their hierarchical assemblies. Matter 2019, 1, 801–824.

    Article  Google Scholar 

  6. Tovar, T. M.; Zhao, J. J.; Nunn, W. T.; Barton, H. F.; Peterson, G. W.; Parsons, G. N.; LeVan, M. D. Diffusion of CO2 in large crystals of Cu-BTC MOF. J. Am. Chem. Soc. 2016, 138, 11449–11452.

    Article  CAS  Google Scholar 

  7. Cai, W. X.; Lee, T.; Lee, M.; Cho, W.; Han, D. Y.; Choi, N.; Yip, A. C. K.; Choi, J. Thermal structural transitions and carbon dioxide adsorption properties of zeolitic imidazolate framework-7 (ZIF-7). J. Am. Chem. Soc. 2014, 136, 7961–7971.

    Article  CAS  Google Scholar 

  8. Choi, K. M.; Jeon, H. J.; Kang, J. K.; Yaghi, O. M. Heterogeneity within order in crystals of a porous metal-organic framework. J. Am. Chem. Soc. 2011, 133, 11920–11923.

    Article  CAS  Google Scholar 

  9. Ameloot, R.; Vermoortele, F.; Vanhove, W.; Roeffaers, M. B. J.; Sels, B. F.; De Vos, D. E. Interfacial synthesis of hollow metal-organic framework capsules demonstrating selective permeability. Nat. Chem. 2011, 3, 382–387.

    Article  CAS  Google Scholar 

  10. Yang, X.; Zhou, H. L.; He, C. T.; Mo, Z. W.; Ye, J. W.; Chen, X. M.; Zhang, J. P. Flexibility of metal-organic framework tunable by crystal size at the micrometer to submillimeter scale for efficient xylene isomer separation. Research 2019, 2019, 9463719.

    Article  CAS  Google Scholar 

  11. Krause, S.; Bon, V.; Senkovska, I.; Többens, D. M.; Wallacher, D.; Pillai, R. S.; Maurin, G.; Kaskel, S. The effect of crystallite size on pressure amplification in switchable porous solids. Nat. Commun. 2018, 9, 1573.

    Article  Google Scholar 

  12. Hirai, K.; Sumida, K.; Meilikhov, M.; Louvain, N.; Nakahama, M.; Uehara, H.; Kitagawa, S.; Furukawa, S. Impact of crystal orientation on the adsorption kinetics of a porous coordination polymer-quartz crystal microbalance hybrid sensor. J. Mater. Chem. C 2014, 2, 3336–3344.

    Article  CAS  Google Scholar 

  13. Sakaida, S.; Otsubo, K.; Sakata, O.; Song, C.; Fujiwara, A.; Takata, M.; Kitagawa, H. Crystalline coordination framework endowed with dynamic gate-opening behaviour by being downsized to a thin film. Nat. Chem. 2016, 8, 377–383.

    Article  CAS  Google Scholar 

  14. Liu, Y. W.; Liu, S. M.; He, D. F.; Li, N.; Ji, Y. J.; Zheng, Z. P.; Luo, F.; Liu, S. X.; Shi, Z.; Hu, C. W. Crystal facets make a profound difference in polyoxometalate-containing metal-organic frameworks as catalysts for biodiesel production. J. Am. Chem. Soc. 2015, 137, 12697–12703.

    Article  CAS  Google Scholar 

  15. Horike, S.; Shimomura, S.; Kitagawa, S. Soft porous crystals. Nat. Chem. 2009, 1, 695–704.

    Article  CAS  Google Scholar 

  16. Férey, G.; Serre, C. Large breathing effects in three-dimensional porous hybrid matter: Facts, analyses, rules and consequences. Chem. Soc. Rev. 2009, 38, 1380–1399.

    Article  Google Scholar 

  17. Schneemann, A.; Bon, V.; Schwedler, I.; Senkovska, I.; Kaskel, S.; Fischer, R. Flexible metal-organic frameworks. Chem. Soc. Rev. 2014, 43, 6062–6069.

    Article  CAS  Google Scholar 

  18. Coudert, F. X. Responsive metal-organic frameworks and framework materials: Under pressure, taking the heat, in the spotlight, with friends. Chem. Mater. 2015, 27, 1905–1916.

    Article  CAS  Google Scholar 

  19. Evans, J. D.; Bon, V.; Senkovska, I.; Lee, H. C.; Kaskel, S. Four-dimensional metal-organic frameworks. Nat. Commun. 2020, 11, 2690.

    Article  CAS  Google Scholar 

  20. Krause, S.; Hosono, N.; Kitagawa, S. Chemistry of soft porous crystals—Structural dynamics and gas adsorption properties. Angew. Chem., Int. Ed., in press, DOI: https://doi.org/10.1002/anie.202004535.

  21. Sakata, Y.; Furukawa, S.; Kondo, M.; Hirai, K.; Horike, N.; Takashima, Y.; Uehara, H.; Louvain, N.; Meilikhov, M.; Tsuruoka, T. et al. Shape-memory nanopores induced in coordination frameworks by crystal downsizing. Science 2013, 339, 193–196.

    Article  CAS  Google Scholar 

  22. Shivanna, M.; Yang, Q. Y.; Bajpai, A.; Sen, S. S.; Hosono, N.; Kusaka, S.; Pham, T.; Forrest, K. A.; Space, B.; Kitagawa, S. et al. Readily accessible shape-memory effect in a porous interpenetrated coordination network. Sci. Adv. 2018, 4, eaaq1636.

    Article  Google Scholar 

  23. Sumida, K.; Moitra, N.; Reboul, J.; Fukumoto, S.; Nakanishi, K.; Kanamori, K.; Furukawa, S.; Kitagawa, S. Mesoscopic superstructures of flexible porous coordination polymers synthesized via coordination replication. Chem. Sci. 2015, 6, 5938–5946.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

K. S. thanks the Australian Research Council for a Discovery Early Career Research Award (No. DE160100306) and a Discovery Project (No. DP190101402), and the Centre for Advanced Nanomaterials at the University of Adelaide for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuhei Furukawa.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sumida, K., Horike, N. & Furukawa, S. Dynamic properties of a flexible metal-organic framework exhibiting a unique “picture frame”-like crystal morphology. Nano Res. 14, 432–437 (2021). https://doi.org/10.1007/s12274-020-3002-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-3002-7

Keywords

Navigation