Skip to main content
Log in

Direct laser patterning of two-dimensional lateral transition metal disulfide-oxide-disulfide heterostructures for ultrasensitive sensors

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Two-dimensional (2D) heterostructures based on the combination of transition metal dichalcogenides (TMDs) and transition metal oxides (TMOs) have aroused growing attention due to their integrated merits of both components and multiple functionalities. However, nondestructive approaches of constructing TMD-TMO heterostructures are still very limited. Here, we develop a novel type of lateral TMD-TMO heterostructure (NbS2-Nb2O5-NbS2) using a simple lithography-free, direct laser-patterning technique. The perfect contact of an ultrathin TMO channel (Nb2O5) with two metallic TMDs (NbS2) electrodes guarantee strong electrical signals in a two-terminal sensor. Distinct from sensing mechanisms in separate TMOs or TMDs, this sensor works based on the modulation of surface conduction of the ultrathin TMO (Nb2O5) channel through an adsorbed layer of water molecules. The sensor thus exhibits high selectivity and ultrahigh sensitivity for room-temperature detection of NH3R/R = 80% at 50 ppm), superior to the reported NH3 sensors based on 2D materials, and a positive temperature coefficient of resistance as high as 15%–20%/°C. Bending-invariant performance and high reliability are also demonstrated in flexible versions of sensors. Our work provides a new strategy of lithography-free processing of novel TMD-TMO heterostructures towards high-performance sensors, showing great potential in the applications of future portable and wearable electronics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cho, S.; Kim, S.; Kim, J. H.; Zhao, J.; Seok, J.; Keum, D. H.; Baik, J.; Choe, D. H.; Chang, K. J.; Suenaga, K. et al. Phase patterning for ohmic homojunction contact in MoTe2. Science2015, 349, 625–628.

    CAS  Google Scholar 

  2. Liu, C. S.; Yan, X.; Song, X. F.; Ding, S. J.; Zhang, D. W.; Zhou, P. A semi-floating gate memory based on van der Waals heterostructures for quasi-non-volatile applications. Nat. Nanotechnol.2018, 13, 404–410.

    CAS  Google Scholar 

  3. Cheng, R. Q.; Wang, F.; Yin, L.; Wang, Z. X.; Wen, Y.; Shifa, T. A.; He, J. High-performance, multifunctional devices based on asymmetric van der Waals heterostructures. Nat. Electron.2018, 1, 356–361.

    CAS  Google Scholar 

  4. Hou, J. W.; Wang, X.; Fu, D. Y.; Ko, C.; Chen, Y. B.; Sun, Y. F.; Lee, S.; Wang, K. X.; Dong, K. C.; Sun, Y. H. et al. Modulating photoluminescence of monolayer molybdenum disulfide by metalinsulator phase transition in active substrates. Small2016, 12, 3976–3984.

    CAS  Google Scholar 

  5. Huh, W.; Jang, S.; Lee, J. Y.; Lee, D.; Lee, D.; Lee, J. M.; Park, H. G.; Kim, J. C.; Jeong, H. Y.; Wang, G. et al. Synaptic barristor based on phase-engineered 2D heterostructures. Adv. Mater.2018, 30, 1801447.

    Google Scholar 

  6. Luo, H.; Wang, B. L.; Wang, E. Z.; Wang, X. W.; Sun, Y. F.; Li, Q. Q.; Fan, S. S.; Cheng, C.; Liu, K. Phase-transition modulated, highperformance dual-mode photodetectors based on WSe2/VO2 heterojunctions. Appl. Phys. Rev.2019, 6, 041407.

    Google Scholar 

  7. Wang, B. L.; Luo, H.; Wang, X. W.; Wang, E. Z.; Sun, Y. F.; Tsai, Y. C.; Zhu, H.; Liu, P.; Jiang, K. L.; Liu, K. Bifunctional NbS2-based asymmetric heterostructure for lateral and vertical electronic devices. ACS Nano2020, 14, 175–184.

    CAS  Google Scholar 

  8. Yuan, Z. Q.; Hou, J. W.; Liu, K. Interfacing 2D semiconductors with functional oxides: Fundamentals, properties, and applications. Crystals2017, 7, 265.

    Google Scholar 

  9. Eranna, G.; Joshi, B. C.; Runthala, D. P.; Gupta, R. P. Oxide materials for development of integrated gas sensors-a comprehensive review. Crit. Rev. Solid State Mater. Sci.2004, 29, 111–188.

    CAS  Google Scholar 

  10. Timmer, B.; Olthuis, W.; Van Den Berg, A. Ammonia sensors and their applications-a review. Sensor Actuat. B Chem.2005, 107, 666–677.

    CAS  Google Scholar 

  11. Late, D. J.; Huang, Y. K.; Liu, B.; Acharya, J.; Shirodkar, S. N.; Luo, J. J.; Yan, A. M.; Charles, D.; Waghmare, U. V.; Dravid, V. P. et al. Sensing behavior of atomically thin-layered MoS2 transistors. ACS Nano2013, 7, 4879–4891.

    CAS  Google Scholar 

  12. Zhao, J.; Li, N.; Yu, H.; Wei, Z.; Liao, M. Z.; Chen, P.; Wang, S. P.; Shi, D. X.; Sun, Q. J.; Zhang, G. Y. Highly sensitive MoS2 humidity sensors array for noncontact sensation. Adv. Mater.2017, 29, 1702076.

    Google Scholar 

  13. Anichini, C.; Czepa, W.; Pakulski, D.; Aliprandi, A.; Ciesielski, A.; Samori, P. Chemical sensing with 2D materials. Chem. Soc. Rev.2018, 47, 4860–4908.

    CAS  Google Scholar 

  14. Tan, C. L.; Cao, X. H.; Wu, X. J.; He, Q. Y.; Yang, J.; Zhang, X.; Chen, J. Z.; Zhao, W.; Han, S. K.; Nam, G. H. et al. Recent advances in ultrathin two-dimensional nanomaterials. Chem. Rev.2017, 117, 6225–6331.

    CAS  Google Scholar 

  15. Frisenda, R.; Navarro-Moratalla, E.; Gant, P.; De Lara, D. P.; Jarillo- Herrero, P.; Gorbachev, R. V.; Castellanos-Gomez, A. Recent progress in the assembly of nanodevices and van der Waals heterostructures by deterministic placement of 2D materials. Chem. Soc. Rev.2018, 47, 53–68.

    CAS  Google Scholar 

  16. Wu, Z. T.; Luo, Z. Z.; Shen, Y. T.; Zhao, W. W.; Wang, W. H.; Nan, H. Y.; Guo, X. T.; Sun, L. T.; Wang, X. R.; You, Y. M. et al. Defects as a factor limiting carrier mobility in WSe2: A spectroscopic investigation. Nano Res.2016, 9, 3622–3631.

    CAS  Google Scholar 

  17. Liu, Y.; Guo, J.; Zhu, E. B.; Liao, L.; Lee, S. J.; Ding, M. N.; Shakir, I.; Gambin, V.; Huang, Y.; Duan, X. F. Approaching the Schottky-Mott limit in van der Waals metal-semiconductor junctions. Nature2018, 557, 696–700.

    CAS  Google Scholar 

  18. Liu, B. L.; Chen, L.; Liu, G.; Abbas, A. N.; Fathi, M.; Zhou, C. W. High-performance chemical sensing using Schottky-contacted chemical vapor deposition grown monolayer MoS2 transistors. ACS Nano2014, 8, 5304–5314.

    CAS  Google Scholar 

  19. Cho, B.; Yoon, J.; Lim, S. K.; Kim, A. R.; Kim, D. H.; Park, S. G.; Kwon, J. D.; Lee, Y. J.; Lee, K. H.; Lee, B. H. et al. Chemical sensing of 2D graphene/MoS2 heterostructure device. ACS Appl. Mater. Interfaces2015, 7, 16775–16780.

    CAS  Google Scholar 

  20. Qin, Z. Y.; Zeng, D. W.; Zhang, J.; Wu, C. Y.; Wen, Y. W.; Shan, B.; Xie, C. S. Effect of layer number on recovery rate of WS2 nanosheets for ammonia detection at room temperature. Appl. Surf. Sci.2017, 414, 244–250.

    CAS  Google Scholar 

  21. Late, D. J.; Doneux, T.; Bougouma, M. Single-layer MoSe2 based NH3 gas sensor. Appl. Phys. Lett.2014, 105, 233103.

    Google Scholar 

  22. Perkins, R.; Ruegg, A.; Fischer, M.; Streit, P.; Menth, A. A new PTC resistor for power applications. IEEE Trans. Compon. Hybr. Manuf. Technol.1982, 5, 225–230.

    Google Scholar 

  23. Hendrix, B. C.; Wang, X.; Chen, W.; Cui, W. Q. Understanding doped V2O3 as a functional positive temperature coefficient material. J. Mater. Sci. Mater. Electron.1992, 3, 113–119.

    CAS  Google Scholar 

  24. Sinclair, D. C.; West, A. R. Impedance and modulus spectroscopy of semiconducting BaTiO3 showing positive temperature coefficient of resistance. J. Appl. Phys.1989, 66, 3850–3856.

    CAS  Google Scholar 

  25. Huybrechts, B.; Ishizaki, K.; Takata, M. The positive temperature coefficient of resistivity in barium titanate. J. Mater. Sci.1995, 30, 2463–2474.

    CAS  Google Scholar 

  26. Fu, Q. D.; Wang, X. W.; Zhou, J. D.; Xia, J.; Zeng, Q. S.; Lv, D. H.; Zhu, C.; Wang, X. L.; Shen, Y.; Li, X. M. et al. One-step synthesis of metal/semiconductor heterostructure NbS2/MoS2. Chem. Mater.2018, 30, 4001–4007.

    CAS  Google Scholar 

  27. Masubuchi, S.; Morimoto, M.; Morikawa, S.; Onodera, M.; Asakawa, Y.; Watanabe, K.; Taniguchi, T.; Machida, T. Autonomous robotic searching and assembly of two-dimensional crystals to build van der Waals superlattices. Nat. Commun.2018, 9, 1413.

    Google Scholar 

  28. Wang, X. S.; Lin, J. H.; Zhu, Y. M.; Luo, C.; Suenaga, K.; Cai, C. Z.; Xie, L. M. Chemical vapor deposition of trigonal prismatic NbS2 monolayers and 3R-polytype few-layers. Nanoscale2017, 9, 16607–16611.

    CAS  Google Scholar 

  29. Jehng, J. M.; Wachs, I. E. Structural chemistry and Raman spectra of niobium oxides. Chem. Mater.1991, 3, 100–107.

    CAS  Google Scholar 

  30. Kim, J. W.; Augustyn, V.; Dunn, B. The effect of crystallinity on the rapid pseudocapacitive response of Nb2O5. Adv. Energy Mater.2012, 2, 141–148.

    CAS  Google Scholar 

  31. Nico, C.; Monteiro, T.; Graca, M. P. F. Niobium oxides and niobates physical properties: Review and prospects. Prog. Mater. Sci.2016, 80, 1–37.

    CAS  Google Scholar 

  32. Kurioka, N.; Watanabe, D.; Haneda, M.; Shimanouchi, T.; Mizushima, T.; Kakuta, N.; Ueno, A.; Hanaoka, T.; Sugi, Y. Preparation of niobium oxide films as a humidity sensor. Catal. Today1993, 16, 495–501.

    CAS  Google Scholar 

  33. Asay, D. B.; Kim, S. H. Evolution of the adsorbed water layer structure on silicon oxide at room temperature. J. Phys. Chem. B2005, 109, 16760–16763.

    CAS  Google Scholar 

  34. Hatch, C. D.; Wiese, J. S.; Crane, C. C.; Harris, K. J.; Kloss, H. G.; Baltrusaitis, J. Water adsorption on clay minerals as a function of relative humidity: Application of BET and Freundlich adsorption models. Langmuir2012, 28, 1790–1803.

    CAS  Google Scholar 

  35. Traversa, E. Ceramic sensors for humidity detection: The state-of-the-art and future developments. Sens. Actuat. B Chem.1995, 23, 135–156.

    CAS  Google Scholar 

  36. Feng, J.; Peng, L. L.; Wu, C. Z.; Sun, X.; Hu, S. L.; Lin, C. W.; Dai, J.; Yang, J. L.; Xie, Y. Giant moisture responsiveness of VS2 ultrathin nanosheets for novel touchless positioning interface. Adv. Mater.2012, 24, 1969–1974.

    CAS  Google Scholar 

  37. Egashira, M.; Nakashima, M.; Kawasumi, S.; Selyama, T. Temperature programmed desorption study of water adsorbed on metal oxides. 2. Tin oxide surfaces. J. Phys. Chem.1981, 85, 4125–4130.

    CAS  Google Scholar 

  38. Gi, R. S.; Mizumasa, T.; Akiba, Y.; Hirose, Y.; Kurosu, T.; Iida, M. Formation mechanism of p-type surface conductive layer on deposited diamond films. Jpn. J. Appl. Phys.1995, 34, 5550–5555.

    CAS  Google Scholar 

  39. Maier, F.; Riedel, M.; Mantel, B.; Ristein, J.; Ley, L. Origin of surface conductivity in diamond. Phys. Rev. Lett.2000, 85, 3472–3475.

    CAS  Google Scholar 

  40. Brown, G. E.; Henrich, V. E.; Casey, W. H.; Clark, D. L.; Eggleston, C.; Felmy, A.; Goodman, D. W.; Grätzel, M.; Maciel, G.; McCarthy, M. I. et al. Metal oxide surfaces and their interactions with aqueous solutions and microbial organisms. Chem. Rev.1999, 99, 77–174.

    CAS  Google Scholar 

  41. Shi, W. D.; Huo, L. H.; Wang, H. S.; Zhang, H. J.; Yang, J. H.; Wei, P. H. Hydrothermal growth and gas sensing property of flower-shaped SnS2 nanostructures. Nanotechnology2006, 17, 2918–2924.

    CAS  Google Scholar 

  42. Kim, Y. H.; Kim, S. J.; Kim, Y. J.; Shim, Y. S.; Kim, S. Y.; Hong, B. H.; Jang, H. W. Self-activated transparent all-graphene gas sensor with endurance to humidity and mechanical bending. ACS Nano2015, 9, 10453–10460.

    CAS  Google Scholar 

  43. Qin, Z. Y.; Xu, K.; Yue, H. C.; Wang, H.; Zhang, J.; Ouyang, C.; Xie, C. S.; Zeng, D. W. Enhanced room-temperature NH3 gas sensing by 2D SnS2 with sulfur vacancies synthesized by chemical exfoliation. Sens. Actuat. B Chem.2018, 262, 771–779.

    CAS  Google Scholar 

  44. Yavari, F.; Castillo, E.; Gullapalli, H.; Ajayan, P. M.; Koratkar, N. High sensitivity detection of NO2 and NH3 in air using chemical vapor deposition grown graphene. Appl. Phys. Lett.2012, 100, 203120.

    Google Scholar 

  45. Park, S. Y.; Kim, Y.; Kim, T.; Eom, T. H.; Kim, S. Y.; Jang, H. W. Chemoresistive materials for electronic nose: Progress, perspectives, and challenges. InfoMat2019, 1, 289–316.

    Google Scholar 

Download references

Acknowledgements

We thank Prof. Yadong Li and Prof. Xiaofeng Feng for their helpful discussions. This work was financially supported by Basic Science Center Project of the National Natural Science Foundation of China (NSFC) (No. 51788104), the National Key R&D Program of China (No. 2018YFA0208400), the National Natural Science Foundation of China (Nos. 51972193 and 11774191), and Fok Ying-Tong Education Foundation (No. 161042)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai Liu.

Electronic Supplementary Material

12274_2020_2872_MOESM1_ESM.pdf

Direct laser patterning of two-dimensional lateral transition metal disulfide-oxide-disulfide heterostructures for ultrasensitive sensors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, B., Luo, H., Wang, X. et al. Direct laser patterning of two-dimensional lateral transition metal disulfide-oxide-disulfide heterostructures for ultrasensitive sensors. Nano Res. 13, 2035–2043 (2020). https://doi.org/10.1007/s12274-020-2872-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-2872-z

Keywords

Navigation