Skip to main content
Log in

Discovery of Zr-based metal-organic polygon: Unveiling new design opportunities in reticular chemistry

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Metal-based secondary building unit and the shape of organic ligands are the two crucial factors for determining the final topology of metal-organic materials. A careful choice of organic and inorganic structural building units occasionally produces unexpected structures, facilitating deeper fundamental understanding of coordination-driven self-assembly behind metal-organic materials. Here, we have synthesized a triangular metal-organic polygon (MOT-1), assembled from bulky tetramethyl terephthalate and Zr-based secondary building unit. Surprisingly, the Zr-based secondary building unit serves as an unusual ditopic Zr-connector, to form metal-organic polygon MOT-1, proven to be a good candidate for water adsorption with recyclability. This study highlights the interplay of the geometrically frustrated ligand and secondary building unit in controlling the connectivity of metal-organic polygon. Such a strategy can be further used to unveil a new class of metal-organic materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O’Keeffe, M.; Yaghi, O. M. Deconstructing the crystal structures of metal-organic frameworks and related materials into their underlying nets. Chem. Rev.2012, 112, 675–702.

    Google Scholar 

  2. Cook, T. R.; Zheng, Y.-R.; Stang, P. J. Metal-organic frameworks and self-assembled supramolecular coordination complexes: Comparing and contrasting the design, synthesis, and functionality of metalorganic materials. Chem. Rev.2013, 113, 734–777.

    CAS  Google Scholar 

  3. Rungtaweevoranit, B.; Diercks, C. S.; Kalmutzki, M. J.; Yaghi, O. M. Spiers memorial lecture: Progress and prospects of reticular chemistry. Faraday Discuss.2017, 201, 9–45.

    CAS  Google Scholar 

  4. Islamoglu, T.; Goswami, S.; Li, Z. Y.; Howarth, A. J.; Farha, O. K.; Hupp, J. T. Postsynthetic tuning of metal-organic frameworks for targeted applications. Acc. Chem. Res.2017, 50, 805–813.

    CAS  Google Scholar 

  5. Moghadam, P. Z.; Li, A.; Wiggin, S. B.; Tao, A. D.; Maloney, A. G. P.; Wood, P. A.; Ward, S. C.; Fairen-Jimenez, D. Development of a Cambridge structural database subset: A collection of metal-organic frameworks for past, present, and future. Chem. Mater.2017, 29, 2618–2625.

    CAS  Google Scholar 

  6. Yaghi, O. M.; O’Keeffe, M.; Ockwig, N. W.; Chae, H. K.; Eddaoudi, M.; Kim, J. Reticular synthesis and the design of new materials. Nature2003, 423, 705–714.

    CAS  Google Scholar 

  7. Yaghi, O. M.; Kalmutzki, M. J.; Diercks, C. S. Introduction to Reticular Chemistry: Metal-Organic Frameworks and Covalent Organic Frameworks; Wiley-VCH: Weinheim, 2019.

    Google Scholar 

  8. O’Keeffe, M.; Peskov, M. A.; Ramsden, S. J.; Yaghi, O. M. The reticular chemistry structure resource (RCSR) database of, and symbols for, crystal nets. Acc. Chem. Res.2008, 41, 1782–1789.

    Google Scholar 

  9. Kalmutzki, M. J.; Hanikel, N.; Yaghi, O. M. Secondary building units as the turning point in the development of the reticular chemistry of MOFs. Sci. Adv.2018, 4, eaat9180.

    CAS  Google Scholar 

  10. Bai, Y.; Dou, Y. B.; Xie, L.-H.; Rutledge, W.; Li, J.-R.; Zhou, H.-C. Zr-based metal-organic frameworks: Design, synthesis, structure, and applications. Chem. Soc. Rev.2016, 45, 2327–2367.

    CAS  Google Scholar 

  11. Howarth, A. J.; Liu, Y. Y.; Li, P.; Li, Z. Y.; Wang, T. C.; Hupp, J. T.; Farha, O. K. Chemical, thermal and mechanical stabilities of metalorganic frameworks. Nat. Rev. Mater.2016, 1, 15018.

    CAS  Google Scholar 

  12. Ding, M.; Flaig, R. W.; Jiang, H.-L.; Yaghi, O. M. Carbon capture and conversion using metal-organic frameworks and MOF-based materials. Chem. Soc. Rev.2019, 48, 2783–2828.

    CAS  Google Scholar 

  13. Deria, P.; Mondloch, J. E.; Tylianakis, E.; Ghosh, P.; Bury, W.; Snurr, R. Q.; Hupp, J. T.; Farha, O. K. Perfluoroalkane functionalization of NU-1000 via solvent-assisted ligand incorporation: Synthesis and CO2 adsorption studies. J. Am. Chem. Soc.2013, 135, 16801–16804.

    CAS  Google Scholar 

  14. Gomez-Gualdron, D. A.; Gutov, O. V.; Krungleviciute, V.; Borah, B.; Mondloch, J. E.; Hupp, J. T.; Yildirim, T.; Farha; O. K.; Snurr, R. Q. Computational design of metal-organic frameworks based on stable zirconium building units for storage and delivery of methane. Chem. Mater.2014, 26, 5632–5639.

    CAS  Google Scholar 

  15. Cao, C.-C.; Chen, C.-X.; Wei, Z.-W.; Qiu, Q.-F.; Zhu, N.-X.; Xiong, Y.-Y.; Jiang, J.-J.; Wang, D. W.; Su, C.-Y. Catalysis through dynamic spacer installation of multivariate functionalities in metal-organic frameworks. J. Am. Chem. Soc.2019, 141, 2589–2593.

    CAS  Google Scholar 

  16. Trickett, C. A.; Popp, T. M. O.; Su, J.; Yan, C.; Weisberg, J.; Huq, A.; Urban, P.; Jiang, J. C.; Kalmutzki, M. J.; Liu, Q. N. et al. Identification of the strong brønsted acid site in a metal-organic framework solid acid catalyst. Nat. Chem.2019, 11, 170–176.

    CAS  Google Scholar 

  17. Xia, Q. C.; Li, Z. J.; Tan, C. X.; Liu, Y.; Gong, W.; Cui, Y. Multivariate metal-organic frameworks as multifunctional heterogeneous asymmetric catalysts for sequential reactions. J. Am. Chem. Soc.2017, 139, 8259–8266.

    CAS  Google Scholar 

  18. Na, K.; Choi, K. M.; Yaghi, O. M.; Somorjai, G. A. Metal nanocrystals embedded in single nanocrystals of MOFs give unusual selectivity as heterogeneous catalysts. Nano Lett.2014, 14, 5979–5983.

    Google Scholar 

  19. Wang, B.; Lv, X.-L.; Feng, D. W.; Xie, L.-H.; Zhang, J.; Li, M.; Xie, Y. B.; Li, J.-R.; Zhou, H.-C. Highly stable Zr(IV)-based metalorganic frameworks for the detection and removal of antibiotics and organic explosives in water. J. Am. Chem. Soc.2016, 138, 6204–6216.

    CAS  Google Scholar 

  20. Hu, Z. C.; Deibert, B. J.; Li, J. Luminescent metal-organic frameworks for chemical sensing and explosive detection. Chem. Soc. Rev.2014, 43, 5815–5840.

    CAS  Google Scholar 

  21. Jiang, H.-L.; Feng, D. W.; Wang, K. C.; Gu, Z.-Y.; Wei, Z. W.; Chen, Y.-P.; Zhou, H.-C. An exceptionally stable, porphyrinic Zr metalorganic framework exhibiting pH-dependent fluorescence. J. Am. Chem. Soc.2013, 135, 13934–13938.

    CAS  Google Scholar 

  22. Liu, G. L.; Ju, Z. F.; Yuan, D. Q.; Hong, M. C. In situ construction of a coordination zirconocene tetrahedron. Inorg. Chem.2013, 52, 13815–13817.

    CAS  Google Scholar 

  23. Nam, D.; Huh, J.; Lee, J.; Kwak, J. H.; Jeong, H. Y.; Choi, K.; Choe, W. Cross-linking Zr-based metal-organic polyhedra via postsynthetic polymerization. Chem. Sci.2017, 8, 7765–7771.

    CAS  Google Scholar 

  24. Liu, G. L.; Yuan, Y. D.; Wang, J.; Cheng, Y. D.; Peh, S. B.; Wang, Y. X.; Qian, Y. H.; Dong, J. Q.; Yuan, D. Q.; Zhao, D. Process-tracing study on the postassembly modification of highly stable zirconium metal-organic cages. J. Am. Chem. Soc.2018, 140, 6231–6234.

    CAS  Google Scholar 

  25. Liu, J. J.; Duan, W. J.; Song, J.; Guo, X. X.; Wang, Z. F.; Shi, X. L.; Liang, J. J.; Wang, J.; Cheng, P.; Chen, Y. et al. Self-healing hypercross- linked metal-organic polyhedra (HCMOPs) membranes with antimicrobial activity and highly selective separation properties. J. Am. Chem. Soc.2019, 141, 12064–12070.

    CAS  Google Scholar 

  26. Sun, M.; Wang, Q.-Q.; Qin, C.; Sun, C.-Y.; Wang, X.-L.; Su, Z.-M. An amine-functionalized zirconium metal-organic polyhedron photocatalyst with high visible-light activity for hydrogen production. Chem.-Eur. J.2019, 25, 2824–2830.

    CAS  Google Scholar 

  27. Choi, J. I.; Chun, H.; Lah, M. S. Zirconium-formate macrocycles and supercage: Molecular packing versus MOF-like network for water vapor sorption. J. Am. Chem. Soc.2018, 140, 10915–10920.

    CAS  Google Scholar 

  28. Höhne, D.; Herdtweck, E.; Pöthig, A.; Kühn, F. E. Synthesis and characterization of dimeric and square-shaped dicarboxylate-bridged dimolybdenum(II) coordination compounds. Inorg. Chim. Acta2015, 424, 210–215.

    Google Scholar 

  29. Cai, X.-M.; Höhne, D.; Köberl, M.; Cokoja, M.; Pöthig, A.; Herdtweck, E.; Haslinger, S.; Herrmann, W. A.; Kühn, F. E. Synthesis and characterization of dimolybdenum(II) complexes connected by carboxylate linkers. Organometallics2013, 32, 6004–6011.

    CAS  Google Scholar 

  30. Li, J.-R.; Yakovenko, A. A.; Lu, W. G.; Timmons, D. J.; Zhuang, W. J.; Yuan, D. Q.; Zhou, H.-C. Ligand bridging-angle-driven assembly of molecular architectures based on quadruply bonded Mo-Mo dimers. J. Am. Chem. Soc.2010, 132, 17599–17610.

    CAS  Google Scholar 

  31. Chisholm, M. H.; Patmore, N. J.; Reed, C. R.; Singh, N. Oxalate bridged triangles incorporating Mo24+ units. Electronic structure and bonding. Inorg. Chem.2010, 49, 7116–7122.

    CAS  Google Scholar 

  32. Cotton, F. A.; Liu, C. Y.; Murillo, C. A.; Wang, X. P. Dimolybdenumcontaining molecular triangles and squares with diamidate linkers: Structural diversity and complexity. Inorg. Chem.2006, 45, 2619–2626.

    CAS  Google Scholar 

  33. Chisholm, M. H.; Macintosh, A. M. Linking multiple bonds between metal atoms: Clusters, dimers of “dimers”, and higher ordered assemblies. Chem. Rev.2005, 105, 2949–2976.

    CAS  Google Scholar 

  34. Cotton, F. A.; Donahue, J. P.; Murillo, C. A. The first supramolecular assemblies comprised of dimetal units and chiral dicarboxylates. Inorg. Chem. Commun.2002, 5, 59–63.

    CAS  Google Scholar 

  35. Cotton, F. A.; Lin, C.; Murillo, C. A. A neutral triangular supramolecule formed by Mo24+ units. Inorg. Chem.2001, 40, 575–577.

    CAS  Google Scholar 

  36. Cotton, F. A.; Lin, C.; Murillo, C. A. Supramolecular squares with Mo24+ corners. Inorg. Chem.2001, 40, 478–484.

    CAS  Google Scholar 

  37. Köberl, M.; Cokoja, M.; Herrmann, W. A.; Kühn, F. E. From molecules to materials: Molecular paddle-wheel synthons of macromolecules, cage compounds and metal-organic frameworks. Dalton Trans.2011, 40, 6834–6859.

    Google Scholar 

  38. Cotton, F. A.; Lin, C.; Murillo, C. A. Supramolecular arrays based on dimetal building units. Acc. Chem. Res.2001, 34, 759–771.

    CAS  Google Scholar 

  39. Cotton, F. A.; Daniels, L. M.; Lin, C.; Murillo, C. A. Square and triangular arrays based on Mo24+ and Rh24+ units. J. Am. Chem. Soc.1999, 121, 4538–4539.

    CAS  Google Scholar 

  40. Cotton, F. A.; Daniels, L. M.; Lin, C.; Murillo, C. A.; Yu, S.-Y. Supramolecular squares with Rh24+ corners. J. Chem. Soc.Dalton Trans., 2001, 502–504.

  41. Bickley, J. F.; Bonar-Law, R. P.; Femoni, C.; MacLean, E. J.; Steiner, A.; Teat, S. J. Dirhodium(II) carboxylate complexes as building blocks. synthesis and structures of square boxes with tilted walls. J. Chem. Soc.Dalton Trans., 2000, 4025–4027.

  42. Bonar-Law, R. P.; McGrath, T. D.; Singh, N.; Bickley, J. F.; Steiner, A. Dinuclear complexes as connectors for carboxylates. Self-assembly of a molecular box. Chem. Commun.1999, 2457–2458.

    Google Scholar 

  43. Song, X. K.; Liu, X. F.; Oh, M.; Lah, M. S. A double-walled triangular metal-organic macrocycle based on a [Cu2(COO)4] square paddle-wheel secondary building unit. Dalton Trans.2010, 39, 6178–6180.

    CAS  Google Scholar 

  44. Wisser, B.; Chamayou, A.-C.; Miller, R.; Scherer, W.; Janiak, C. A chiral C3-symmetric hexanuclear triangular-prismatic copper(II) cluster derived from a highly modular dipeptidic N,N’-terephthaloyl-bis(Saminocarboxylato) ligand. CrystEngComm2008, 10, 461–464.

    CAS  Google Scholar 

  45. Zhang, Y. T.; Wang, X. L.; Li, S. B.; Song, B. Q.; Shao, K. Z.; Su, Z. M. Ligand-directed assembly of polyoxovanadate-based metal-organic polyhedra. Inorg. Chem.2016, 55, 8770–8775.

    CAS  Google Scholar 

  46. Zhang, Z. X.; Gao, W.-Y.; Wojtas, L.; Zhang, Z. J.; Zaworotko, M. J. A new family of anionic organic-inorganic hybrid doughnut-like nanostructures. Chem. Commun.2015, 51, 9223–9226.

    CAS  Google Scholar 

  47. Guillerm, V.; Maspoch, D. Geometry mismatch and reticular chemistry: Strategies to assemble metal-organic frameworks with non-default topologies. J. Am. Chem. Soc.2019, 141, 16517–16538.

    CAS  Google Scholar 

  48. Li, H. L.; Eddaoudi, M.; Groy, T. L.; Yaghi, O. M. Establishing microporosity in open metal-organic frameworks: Gas sorption isotherms for Zn(BDC) (BDC = 1,4-benzenedicarboxylate). J. Am. Chem. Soc.1998, 120, 8571–8572.

    CAS  Google Scholar 

  49. Furukawa, H.; Kim, J.; Ockwig, N. W.; O’Keeffe, M.; Yaghi, O. M. Control of vertex geometry, structure dimensionality, functionality, and pore metrics in the reticular synthesis of crystalline metal-organic frameworks and polyhedra. J. Am. Chem. Soc.2008, 130, 11650–11661.

    CAS  Google Scholar 

  50. Eddaoudi, M.; Kim, J.; O’Keeffe, M.; Yaghi, O. M. Cu2[o-Br-C6H3(CO2)2]2(H2O)2·(DMF)8(H2O)2: A framework deliberately designed to have the NbO structure type. J. Am. Chem. Soc.2002, 124, 376–377.

    CAS  Google Scholar 

  51. Eddaoudi, M.; Kim, J.; Wachter, J. B.; Chae, H. K.; O’Keeffe, M.; Yaghi, O. M. Porous metal-organic polyhedra: 25 Å cuboctahedron constructed from 12 Cu2(CO2)4 paddle-wheel building blocks. J. Am. Chem. Soc.2001, 123, 4368–4369.

    CAS  Google Scholar 

  52. Bon, V.; Senkovska, I.; Baburin, I. A.; Kaskel, S. Zr- and Hf-based metal-organic frameworks: Tracking down the polymorphism. Cryst. Growth Des.2013, 13, 1231–1237.

    CAS  Google Scholar 

  53. Furukawa, H.; Gándara, F.; Zhang, Y. B.; Jiang, J. C.; Queen, W. L.; Hudson, M. R.; Yaghi, O. M. Water adsorption in porous metal-organic frameworks and related materials. J. Am. Chem. Soc.2014, 136, 4369–4381.

    CAS  Google Scholar 

  54. Cavka, J. H.; Jakobsen, S.; Olsbye, U.; Guillou, N.; Lamberti, C.; Bordiga, S.; Lillerud, K. P. A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability. J. Am. Chem. Soc.2008, 130, 13850–13851.

    Google Scholar 

  55. Ju, Z. F.; Liu, G. L.; Chen, Y.-S.; Yuan, D. Q.; Chen, B. L. From coordination cages to a stable crystalline porous hydrogen-bonded framework. Chem.-Eur. J.2017, 23, 4774–4777.

    CAS  Google Scholar 

  56. Lee, H. S.; Jee, S.; Kim, R.; Bui, H.-T.; Kim, B.; Kim, J.-K.; Park, K. S.; Choi, W.; Kim, W.; Choi, K. M. A highly active, robust photocatalyst heterogenized in discrete cages of metal-organic polyhedra for CO2 reduction. Energy Environ. Sci.2020, 13, 519–526.

    CAS  Google Scholar 

  57. Jiao, J. J.; Tan, C. X.; Li, Z. J.; Liu, Y.; Han, X.; Cui, Y. Design and assembly of chiral coordination cages for asymmetric sequential reactions. J. Am. Chem. Soc.2018, 140, 2251–2259.

    CAS  Google Scholar 

  58. Liu, G. L.; Zeller, M.; Su, K. Z.; Pang, J. D.; Ju, Z. F.; Yuan, D. Q.; Hong M. C. Controlled orthogonal self-assembly of heterometaldecorated coordination cages. Chem.-Eur. J.2016, 22, 17345–17350.

    CAS  Google Scholar 

  59. Jansze, S. M.; Cecot, G.; Wise, M. D.; Zhurov, K. O.; Ronson, T. K.; Castilla, A. M.; Finelli, A.; Pattison, P.; Solari, E.; Scopelliti, R. et al. Ligand aspect ratio as a decisive factor for the self-assembly of coordination cages. J. Am. Chem. Soc.2016, 138, 2046–2054.

    CAS  Google Scholar 

  60. Roy, B.; Saha, R.; Ghosh, A. K.; Patil, Y.; Mukherjee, P. S. Versatility of two diimidazole building blocks in coordination-driven selfassembly. Inorg. Chem.2017, 56, 3579–3588.

    CAS  Google Scholar 

  61. Samanta, D.; Chowdhury, A.; Mukherjee, P. S. Covalent postassembly modification and water adsorption of Pd3 self-assembled trinuclear barrels. Inorg. Chem.2016, 55, 1562–1568.

    CAS  Google Scholar 

  62. Tranchemontagne, D. J.; Ni, Z.; O’Keeffe, M.; Yaghi, O. M. Reticular chemistry of metal-organic polyhedra. Angew. Chem. Int. Ed.2008, 47, 5136–5147.

    CAS  Google Scholar 

  63. Cecot, G.; Marmier, M.; Geremia, S.; De Zorzi, R.; Vologzhanina, A. V.; Pattison, P.; Solari, E.; Fadaei Tirani, F.; Scopelliti, R.; Severin, K. The intricate structural chemistry of MII2nLn-type assemblies. J. Am. Chem. Soc.2017, 139, 8371–8381.

    CAS  Google Scholar 

  64. Gupta, G.; Das, A.; Park, K. C.; Tron, A.; Kim, H.; Mun, J.; Mandal, N.; Chi, K.-W.; Lee, C. Y. Self-assembled novel BODIPY-based palladium supramolecules and their cellular localization. Inorg. Chem.2017, 56, 4615–4621.

    Google Scholar 

  65. Fujita, M.; Sasaki, O.; Mitsuhashi, T.; Fujita, T.; Yazaki, J.; Yamaguchi, K.; Ogura, K. On the structure of transition-metal-linked molecular squares. Chem. Commun.1996, 1535–1536.

    Google Scholar 

  66. Holliday, B. J.; Mirkin, C. A. Strategies for the construction of supramolecular compounds through coordination chemistry. Angew. Chem. Int. Ed.2001, 40, 2022–2043.

    CAS  Google Scholar 

  67. Wang, W.; Wang, Y.-X.; Yang, H.-B. Supramolecular transformations within discrete coordination-driven supramolecular architectures. Chem. Soc. Rev.2016, 45, 2656–2693.

    CAS  Google Scholar 

  68. Fujita, M.; Nagao, S,; Iida, M.; Ogata, K.; Ogura, K. Palladium(II)- directed assembly of macrocyclic dinuclear complexes composed of (en)Pd2+ and bis(4-pyridyl)-substituted bidentate ligands. Remarkable ability for molecular recognition of electron-rich aromatic guests. J. Am. Chem. Soc.1993, 115, 1574–1576.

    CAS  Google Scholar 

  69. Yu, L. N.; Jiang, X. F.; Yu, S. Y. Self-assembly of chiral nano-bowl from chiral Pd-complex building corners and 4,7-phenanthroline linkers. Chin. J. Chem.2015, 33, 152–155.

    CAS  Google Scholar 

  70. Leininger, S.; Fan, J.; Schmitz, M.; Stang, P. J. Archimedean solids: Transition metal mediated rational self-assembly of supramoleculartruncated tetrahedra. Proc. Natl. Acad. Sci. USA2000, 97, 1380–1384.

    CAS  Google Scholar 

  71. Fujita, M.; Oguro, D.; Miyazawa, M.; Oka, H.; Yamaguchi, K.; Ogura, K. Self-assembly of ten molecules into nanometre-sized organic host frameworks. Nature1995, 378, 469–471.

    CAS  Google Scholar 

  72. Caskey, D. C.; Yamamoto, T.; Addicott, C.; Shoemaker, R. K.; Vacek, J.; Hawkridge, A. M.; Muddiman, D. C.; Kottas, G. S.; Michl, J.; Stang, P. J. Coordination-driven face-directed self-assembly of trigonal prisms. Face-based conformational chirality. J. Am. Chem. Soc.2008, 130, 7620–7628.

    CAS  Google Scholar 

  73. Zheng, Y.-R.; Zhao, Z. G.; Kim, H.; Wang, M.; Ghosh, K.; Pollock, J. B.; Chi, K.-W.; Stang, P. J. Coordination-driven self-assembly of truncated tetrahedra capable of encapsulating 1,3,5-triphenylbenzene. Inorg. Chem.2010, 49, 10238–10240.

    CAS  Google Scholar 

  74. Cotton, F. A.; Lin, C.; Murillo, C. A. Connecting pairs of dimetal units to form molecular loops. Inorg. Chem.2001, 40, 472–477.

    CAS  Google Scholar 

  75. Lorzing, G. R.; Gosselin, E. J.; Lindner, B. S.; Bhattacharjee, R.; Yap, G. P. A.; Caratzoulas, S.; Bloch, E. D. Design and synthesis of capped-paddlewheel-based porous coordination cages. Chem. Commun.2019, 55, 9527–9530.

    CAS  Google Scholar 

  76. Cotton, F. A.; Daniels, L. M.; Lin, C.; Murillo, C. A. The designed ‘self-assembly’ of a three-dimensional molecule containing six quadruply-bonded Mo24+ units. Chem. Commun.1999, 841–842.

    Google Scholar 

  77. Nelson, M.; Raschke, E.; McClelland, M. Effect of site-specific methylation on restriction endonucleases and DNA modification methyltransferases. Nucleic Acids Res.1993, 21, 3139–3154.

    CAS  Google Scholar 

  78. Barron, P. M.; Wray, C. A.; Hu, C. H.; Guo, Z. Y.; Choe, W. A bioinspired synthetic approach for building metal-organic frameworks with accessible metal centers. Inorg. Chem.2010, 49, 10217–10219.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Korea Environment Industry & Technology Institute (KEITI) through Public Technology Program based on Environmental Policy Program, funded by Korea Ministry of Environment (MOE) (No. 2018000210002) and National Research Foundation (NRF) of Korea (Nos. NRF-2016R1A5A1009405 and NRF-2017M3C1B4051161). D.-W. L. and H. K. acknowledge the support from the ACCEL program, Japan Science and Technology Agency (JST), JPMJAC1501. J. K. acknowledges the support from NRF Grant funded by the Korean Government (No. NRF-2018H1A2A1061391-Global Ph.D. Fellowship Program). We acknowledge the Pohang Accelerator Laboratory (PAL) for 2D beamline use (2019- 1st-2D-038). We would like to thank Hyeonsoo Cho for providing 3D models for possible structures shown in Fig. 8.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dae-Woon Lim or Wonyoung Choe.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, J., Nam, D., Kitagawa, H. et al. Discovery of Zr-based metal-organic polygon: Unveiling new design opportunities in reticular chemistry. Nano Res. 14, 392–397 (2021). https://doi.org/10.1007/s12274-020-2830-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-2830-9

Keywords

Navigation