Skip to main content
Log in

Atomically thin defect-rich Ni-Se-S hybrid nanosheets as hydrogen evolution reaction electrocatalysts

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Facile design of economic-effective hydrogen evolution reaction (HER) catalysts with non-noble materials are promising for the production of renewable chemical fuels. Two-dimensional (2D) ultrathin transition metal dichalcogenides (TMDs) materials with large specific surface area and abundant catalytic active sites can significantly enhance their catalytic activities. Herein, we design and synthesize an atomically thin Ni-Se-S based hybrid nanosheet (NiSe1.2S0.8) via a simple solvothermal method, the thickness of NiSe1.2S0.8 nanosheets is only about 1.1 nm. Benefiting from the ultrathin nanostructure and rich defects, the optimal NiSe1.2S0.8 exhibits good electrocatalytic activity with the overpotential of 144 mV at −10 mA·cm−2, a small Tafel slope of 59 mV·dec−1, and outstanding catalytic stability in acid electrolyte for HER. The theoretical results show that hybrid electrocatalyst by S incorporation possesses the optimal adsorption free energy of hydrogen (ΔGH*). This study provides a simple method to synthesize a highperformance multicomponent electrocatalysts with the ultrathin nanostructures and abundant defects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhi, W. S.; Kibsgaard, J.; Dickens, C. F.; Chorkendorff, I.; Nørskov, J. K.; Jaramillo, T. F. Combining theory and experiment in electrocatalysis: Insights into materials design. Science2017, 355, 4998–5009.

    Google Scholar 

  2. Faber, M. S.; Jin, S. Earth-abundant inorganic electrocatalysts and their nanostructures for energy conversion applications. Energy Environ. Sci. 2014, 7, 3519–3542.

    CAS  Google Scholar 

  3. Ekspong, J.; Sharifi, T.; Shchukarev, A.; Klechikov, A.; Wågberg, T.; Gracia-Espino, E. Stabilizing active edge sites in semicrystalline molybdenum sulfide by anchorage on nitrogen-doped carbon nanotubes for hydrogen evolution reaction. Adv. Funct. Mater. 2016, 26, 6766–6776.

    CAS  Google Scholar 

  4. Zou, X. X.; Zhang, Y. Noble metal-free hydrogen evolution catalysts for water splitting. Chem. Soc. Rev. 2015, 44, 5148–5180.

    CAS  Google Scholar 

  5. Jaramillo, T. F.; Jorgensen, K. P.; Bonde, J.; Nielsen, J. H.; Horch, S.; Chorkendorff, I. Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts. Science2007, 317, 100–102.

    CAS  Google Scholar 

  6. Kong, D. S.; Wang, H. T.; Lu, Z. Y.; Cui, Y. CoSe2 nanoparticles grown on carbon fiber paper: An efficient and stable electrocatalyst for hydrogen evolution reaction. J. Am. Chem. Soc. 2014, 136, 4897–4900.

    CAS  Google Scholar 

  7. Anantharaj, S.; Ede, S. R.; Sakthikumar, K.; Karthick, K.; Mishra, S.; Kundu, S. Recent trends and perspectives in electrochemical water splitting with an emphasis on sulfide, selenide, and phosphide catalysts of Fe, Co, and Ni: A review. ACS Catal. 2016, 6, 8069–8097.

    CAS  Google Scholar 

  8. Chen, B.; Sun, G. Z.; Wang, J.; Liu, G. G.; Tan, C. L.; Chen, Y.; Cheng, H. F.; Chen, J. Z.; Ma, Q. L.; Huang, L. et al. Transition metal dichalcogenide/multi-walled carbon nanotube-based fibers as flexible electrodes for electrocatalytic hydrogen evolution. Chem. Commun., in press, DOI: 10.1039/D0CC00506A.

  9. Wang, S. P.; Wang, J.; Zhu, M. L.; Bao, X. B.; Xiao, B. Y.; Su, D. F.; Li, H. R.; Wang, Y. Molybdenum-carbide-modified nitrogen-doped carbon vesicle encapsulating nickel nanoparticles: A highly efficient, low-cost catalyst for hydrogen evolution reaction. J. Am. Chem. Soc. 2015, 137, 15753–15759.

    CAS  Google Scholar 

  10. Faber, M. S.; Lukowski, M. A.; Ding, Q.; Kaiser, N. S.; Jin, S. Earth-abundant metal pyrites (FeS2, CoS2, NiS2, and their alloys) for highly efficient hydrogen evolution and polysulfide reduction electrocatalysis. J. Phys. Chem. C2014, 118, 21347–21356.

    CAS  Google Scholar 

  11. Sun, Y. Q.; Xu, K.; Wei, Z. X.; Li, H. L.; Zhang, T.; Li, X. Y.; Cai, W. P.; Ma, J. M.; Fan, H. J.; Li, Y. Strong electronic interaction in dual-cation-incorporated NiSe2 nanosheets with lattice distortion for highly efficient overall water splitting. Adv. Mater. 2018, 30, 1802121.

    Google Scholar 

  12. Lukowski, M. A.; Daniel, A. S.; Meng, F.; Forticaux, A.; Li, L. S.; Jin, S. Enhanced hydrogen evolution catalysis from chemically exfoliated metallic MoS2 nanosheets. J. Am. Chem. Soc. 2013, 135, 10274–10277.

    CAS  Google Scholar 

  13. Xia, Y. F.; Huang, J. W.; Wu, W. Q.; Zhang, Y. D.; Wang, H.; Zhu, J. T.; Yao, J. J.; Xu, L.; Sun, Y. H.; Zhang, L. et al. Sulfur-doped rhenium selenide vertical nanosheets: A high-performance electrocatalyst for hydrogen evolution. ChemCatChem2018, 10, 4424–4430.

    CAS  Google Scholar 

  14. Wang, H.; Ouyang, L. Y.; Zou, G. F.; Sun, C.; Hu, J.; Xiao, X.; Gao, L. J. Optimizing MoS2 edges by alloying isovalent W for robust hydrogen evolution activity. ACS Catal. 2018, 10, 9529–9536.

    Google Scholar 

  15. Kibsgaard, J.; Jaramillo, T. F. Molybdenum phosphosulfide: An active, acid-stable, earth-abundant catalyst for the hydrogen evolution reaction. Angew. Chem., Int. Ed.2014, 53, 14433–14437.

    CAS  Google Scholar 

  16. Cabán-Acevedo, M.; Stone, M. L.; Schmidt, J. R.; Thomas, J. G.; Ding, Q.; Chang, H. C.; Tsai, M. L.; He, J. H.; Jin, S. Efficient hydrogen evolution catalysis using ternary pyrite-type cobalt phosphosulphide. Nat. Mater. 2015, 14, 1245–1251.

    Google Scholar 

  17. Hou, Y.; Qiu, M.; Nam, G.; Kim, M. G.; Zhang, T.; Liu, K. J.; Zhuang, X. D.; Cho, J.; Yuan, C.; Feng, X. L. Integrated hierarchical cobalt sulfide/nickel selenide hybrid nanosheets as an efficient three-dimensional electrode for electrochemical and photoelectrochemical water splitting. Nano Lett. 2017, 17, 4202–4209.

    CAS  Google Scholar 

  18. Gong, Q. F.; Cheng, L.; Liu, C. H.; Zhang, M.; Feng, Q. L.; Ye, H. L.; Zeng, M.; Xie, L. M.; Liu, Z.; Li, Y. G. Ultrathin MoS2(1−x)Se2x alloy nanoflakes for electrocatalytic hydrogen evolution reaction. ACS Catal. 2015, 5, 2213–2219.

    CAS  Google Scholar 

  19. Yang, J.; Zhang, F. J.; Wang, X.; He, D. S.; Wu, G.; Yang, Q. H.; Hong, X.; Wu, Y.; Li, Y. D. Porous molybdenum phosphide nanooctahedrons derived from confined phosphorization in UIO-66 for efficient hydrogen evolution. Angew. Chem., Int. Ed.2016, 55, 12854–12858.

    CAS  Google Scholar 

  20. Ma, B.; Yang, Z. C.; Chen, Y. T.; Yuan, Z. H. Nickel cobalt phosphide with three-dimensional nanostructure as a highly efficient electrocatalyst for hydrogen evolution reaction in both acidic and alkaline electrolytes. Nano Res. 2019, 12, 375–380.

    CAS  Google Scholar 

  21. Wu, K. L.; Chen, Z.; Cheong, W. C.; Liu, S. J.; Zhu, W.; Cao, X.; Sun, K. A.; Lin, Y.; Zheng, L. R.; Yan, W. S. et al. Toward bifunctional overall water splitting electrocatalyst: General preparation of transition metal phosphide nanoparticles decorated N-doped porous carbon spheres. ACS Appl. Mater. Interfaces2018, 10, 44201–44208.

    CAS  Google Scholar 

  22. Wang, Y. P.; Ma, B.; Chen, Y. T. Iron phosphides supported on three-dimensional iron foam as an efficient electrocatalyst for water splitting reactions. J. Mater. Sci. 2019, 54, 14872–14883.

    CAS  Google Scholar 

  23. Xu, Y. T.; Xiao, X. F.; Ye, Z. M.; Zhao, S. L.; Shen, R. G.; He, C. T.; Zhang, J. P.; Li, Y. D.; Chen, X. M. Cage-confinement pyrolysis route to ultrasmall tungsten carbide nanoparticles for efficient electrocatalytic hydrogen evolution. J. Am. Chem. Soc. 2017, 139, 5285–5288.

    CAS  Google Scholar 

  24. Ma, B.; Yang, Z. C.; Yuan, Z. H.; Chen, Y. T. Effective surface roughening of three-dimensional copper foam via sulfurization treatment as a bifunctional electrocatalyst for water splitting. Int. J. Hydrogen Energy2019, 44, 1620–1626.

    CAS  Google Scholar 

  25. Chen, W. X.; Pei, J. J.; He, C. T.; Wan, J. W.; Ren, H. L.; Zhu, Y. Q.; Wang, Y.; Dong, J. C.; Tian, S. B.; Cheong, W. C. et al. Rational design of single molybdenum atoms anchored on N-doped carbon for effective hydrogen evolution reaction. Angew. Chem., Int. Ed.2017, 56, 16086–16090.

    CAS  Google Scholar 

  26. Li, H.; Wu, J. T.; Yin, Z. Y.; Zhang, H. Preparation and applications of mechanically exfoliated single-layer and multilayer MoS2 and WSe2 nanosheets. Acc. Chem. Res. 2014, 4, 1067–1075.

    Google Scholar 

  27. Liang, L.; Li, K.; Xiao, C.; Fan, S. J.; Liu, J.; Zhang, W. S.; Xu, W. H.; Tong, W.; Liao, J. Y.; Zhou, Y. Y. et al. Vacancy associates-rich ultrathin nanosheets for high performance and flexible nonvolatile memory device. J. Am. Chem. Soc. 2015, 22, 3102–3108.

    Google Scholar 

  28. Kuang, Y.; Feng, G.; Li, P. S.; Bi, Y. M.; Li, Y. P.; Sun, X. M. Single-crystalline ultrathin nickel nanosheets array from in situ topotactic reduction for active and stable electrocatalysis. Angew. Chem., Int. Ed.2016, 55, 693–697.

    CAS  Google Scholar 

  29. Sun, Y. F.; Cheng, H.; Gao, S.; Liu, Q. H.; Sun, Z. H.; Xiao, C.; Wu, C. Z.; Wei, S. Q.; Xie, Y. Atomically thick bismuth selenide freestanding single layers achieving enhanced thermoelectric energy harvesting. J. Am. Chem. Soc. 2012, 134, 20294–20297.

    CAS  Google Scholar 

  30. Liu, W.; Liu, H.; Dang, L. N.; Zhang, H. X.; Wu, X. L.; Yang, B.; Li, Z. J.; Zhang, X. W.; Lei, L. C.; Jin, S. Amorphous cobalt–iron hydroxide nanosheet electrocatalyst for efficient electrochemical and photoelectrochemical oxygen evolution. Adv. Funct. Mater. 2017, 27, 1603904.

    Google Scholar 

  31. Teng, Y.; Wang, X. D.; Liao, J. F.; Li, W. G.; Chen, H. Y.; Dong, Y. J.; Kuang, D. B. Atomically thin defect-rich Fe-Mn-O hybrid nanosheets as high efficient electrocatalyst for water oxidation. Adv. Funct. Mater. 2018, 28, 1802463.

    Google Scholar 

  32. Sun, J. P.; Huang, Z. D.; Huang, T. X.; Wang, X. K.; Wang, X.; Yu, P. Y.; Zong, C.; Dai, F. N.; Sun, D. F. Defect-rich porous CoS1.097/MoS2 hybrid microspheres as electrocatalysts for pH-universal hydrogen evolution. ACS Appl. Energy Mater. 2019, 2, 7504–7511.

    CAS  Google Scholar 

  33. Xie, J. F.; Zhang, H.; Li, S.; Wang, R. X.; Sun, X.; Zhou, M.; Zhou, J. F.; Lou, X. W.; Xie. Y. Defect-rich MoS2 ultrathin nanosheets with additional active edge sites for enhanced electrocatalytic hydrogen evolution. Adv. Mater. 2013, 25, 5807–5813.

    CAS  Google Scholar 

  34. Zhuo, J. Q.; Cabán-Acevedo, M.; Liang, H. F.; Samad, L.; Ding, Q.; Fu, Y. P.; Li, M. X.; Jin, S. High-performance electrocatalysis for hydrogen evolution reaction using Se-doped pyrite-phase nickel diphosphide nanostructures. ACS Catal. 2015, 5, 6355–6361.

    CAS  Google Scholar 

  35. Ma, F. X.; Xu, C. Y.; Lyu, F.; Song, B.; Sun, S. C.; Li, Y. Y.; Lu, J.; Zhen, L. Construction of FeP hollow nanoparticles densely encapsulated in carbon nanosheet frameworks for efficient and durable electrocatalytic hydrogen production. Adv. Sci. 2019, 6, 1801490.

    Google Scholar 

  36. Li, Q.; Wang, D. W.; Han, C.; Ma, X.; Lu, Q. Q.; Xing, Z. C.; Yang, X. R. Construction of amorphous interface in an interwoven NiS/NiS2 structure for enhanced overall water splitting. J. Mater. Chem. A2018, 6, 8233–8237.

    CAS  Google Scholar 

  37. Sommer, F.; Singh, R. N.; Mittemeijer, E. J. Interface thermodynamics of nano-sized crystalline, amorphous and liquid metallic systems. J. Alloy. Compd. 2009, 467, 142–153.

    CAS  Google Scholar 

  38. Xu, J. Y.; Liu, T. F.; Li, J. J.; Li, B.; Liu, Y. F.; Zhang, B. S.; Xiong, D. H.; Amorim, I.; Li, W.; Liu, L. F. Boosting the hydrogen evolution performance of ruthenium clusters through synergistic coupling with cobalt phosphide. Energy Environ. Sci. 2018, 11, 1819–1827.

    CAS  Google Scholar 

  39. Wen, G. D.; Wang, B. L.; Wang, C. X.; Wang, J.; Tian, Z. J.; Schlogl, R.; Su, D. S. Hydrothermal carbon enriched with oxygenated groups from biomass glucose as an efficient carbocatalyst. Angew. Chem., Int. Ed.2017, 56, 600–604.

    CAS  Google Scholar 

  40. Pu, Z. H.; Amiinu, I. S.; Wang, M.; Yang, Y. S.; Mu, S. C. Semimetallic MoP2: An active and stable hydrogen evolution electrocatalyst over the whole pH range. Nanoscale2016, 8, 8500–8504.

    CAS  Google Scholar 

  41. Yu, B.; Wang, X. Q.; Qi, F.; Zheng, B. J.; He, J. R.; Lin, J.; Zhang, W. L.; Li, Y. R.; Chen, Y. F. Self-assembled coral-like hierarchical architecture constructed by NiSe2 nanocrystals with comparable hydrogen-evolution performance of precious platinum catalyst. ACS Appl. Mater. Interfaces2017, 9, 7154–7159.

    CAS  Google Scholar 

  42. Zhai, L. L.; Mak, C. H.; Qian, J. S.; Lin, S. H.; Lau, S. P. Selfreconstruction mechanism in NiSe2 nanoparticles/carbon fiber paper bifunctional electrocatalysts for water splitting. Electrochim. Acta2019, 305, 37–46.

    CAS  Google Scholar 

  43. Wang, T. T.; Gao, D. Q.; Xiao, W.; Xi, P. X.; Xue, D. S.; Wang, J. Transition-metal-doped NiSe2 nanosheets towards efficient hydrogen evolution reactions. Nano Res. 2018, 11, 6051–6061.

    CAS  Google Scholar 

  44. Xu, X.; Song, F.; Hu, X. L. A nickel iron diselenide-derived efficient oxygen-evolution catalyst. Nat. Commun. 2016, 7, 12324.

    CAS  Google Scholar 

  45. Wang, K.; Zhou, C. J.; Xia, D.; Shi, Z. Q.; He, C.; Xia, H. Y.; Liu, G. W.; Qiao, G. J. Component-controllable synthesis of Co(SxSe1−x)2 nanowires supported by carbon fiber paper as high-performance electrode for hydrogen evolution reaction. Nano Energy2015, 18, 1–11.

    Google Scholar 

  46. Meng, H. J.; Zhang, W. J.; Ma, Z. Z.; Zhang, F.; Tang, B.; Li, J. P.; Wang, X. G. Self-supported ternary Ni-S-Se nanorod arrays as highly active electrocatalyst for hydrogen generation in both acidic and basic media: Experimental investigation and DFT calculation. ACS Appl. Mater. Interfaces2018, 10, 2430–2441.

    CAS  Google Scholar 

  47. Fang, Y. H.; Liu, Z. P. Tafel kinetics of electrocatalytic reactions: From experiment to first-principles. ACS Catal. 2014, 4, 4364–4376.

    CAS  Google Scholar 

  48. Xie, J. F.; Zhang, J. J.; Li, S.; Grote, F.; Zhang, X. D.; Zhang, H.; Wang, R. X.; Lei, Y.; Pan, B. C.; Xie, Y. Controllable disorder engineering in oxygen-incorporated MoS2 ultrathin nanosheets for efficient hydrogen evolution. J. Am. Chem. Soc. 2013, 135, 17881–17888.

    CAS  Google Scholar 

  49. Gao, M. R.; Liang, J. X.; Zheng, Y. R.; Xu, Y. F.; Jiang, J.; Gao, Q.; Li, J.; Yu, S. H. An efficient molybdenum disulfide/cobalt diselenide hybrid catalyst for electrochemical hydrogen generation. Nat. Commun. 2015, 6, 5982.

    CAS  Google Scholar 

  50. Pu, Z. H.; Amiinu, I. S.; Kou, Z. K.; Li, W. Q.; Mu, S. C. RuP2-based catalysts with platinum-like activity and higher durability for the hydrogen evolution reaction at all pH values. Angew. Chem., Int. Ed.2017, 56, 11559–11564.

    CAS  Google Scholar 

  51. Nørskov, J. K.; Bligaard, T.; Logadottir, A.; Kitchin, J. R.; Chen, J. G.; Pandelov, S.; Stimming, U. Trends in the exchange current for hydrogen evolution. J. Electrochem. Soc.2005, 152, J23–J26.

    Google Scholar 

  52. Lin, J. H.; Wang, H. H.; Cao, J.; He, F.; Feng, J. C.; Qi, J. L. Engineering Se vacancies to promote the intrinsic activities of P doped NiSe2 nanosheets for overall water splitting. J. Colloid Interface Sci. 2020, 571, 260–266.

    CAS  Google Scholar 

  53. Liu, C. C.; Gong, T.; Zhang, J.; Zheng, X. R.; Mao, J.; Liu, H.; Lia, Y.; Hao, Q. Y. Engineering Ni2P-NiSe2 heterostructure interface for highly efficient alkaline hydrogen evolution. Appl. Catal. B Environ. 2020, 262, 118245.

    CAS  Google Scholar 

  54. Lv, X. S.; Wei, W.; Wang, H.; Huang, B. B.; Dai, Y. Multifunctional electrocatalyst PtM with low Pt loading and high activity towards hydrogen and oxygen electrode reactions: A computational study. Appl. Catal. B Environ. 2019, 255, 117743.

    CAS  Google Scholar 

  55. Zhang, J. F.; Wang, Y.; Cui, J. W.; Wu, J. J.; Shu, X.; Yu, C. P.; Bai, H. Z.; Zha, M. Y.; Qin, Y. Q.; Zheng, H. M. et al. In-situ synthesis of carbon-coated β-NiS nanocrystals for hydrogen evolution reaction in both acidic and alkaline solution. Int. J. Hydrogen Energy2018, 43, 16061–16067.

    CAS  Google Scholar 

  56. Yan, J. Q.; Wu, H.; Li, P.; Chen, H.; Jiang, R. B.; Liu, S. Z. Fe(III) doped NiS2 nanosheet: A highly efficient and low-cost hydrogen evolution catalyst. J. Mater. Chem. A2017, 5, 10173–10181.

    CAS  Google Scholar 

  57. Zhang, L.; Wang, T.; Sun, L.; Sun, Y. J.; Hu, T. W.; Xu, K. W.; Ma, F. Hydrothermal synthesis of 3D hierarchical MoSe2/NiSe2 composite nanowires on carbon fiber paper and their enhanced electrocatalytic activity for the hydrogen evolution reaction. J. Mater. Chem. A2017, 5, 19752–19759.

    CAS  Google Scholar 

  58. Kuang, P. Y.; Tong, T.; Fan, K.; Yu, J. G. In situ fabrication of Ni-Mo bimetal sulfide hybrid as an efficient electrocatalyst for hydrogen evolution over a wide pH range. ACS Catal. 2017, 7, 6179–6187.

    CAS  Google Scholar 

  59. Liu, C. H.; Wang, K.; Zheng, X. R.; Liu, X. C.; Liang, Q.; Chen, Z. D. Rational design of MoSe2-NiSe@carbon heteronanostructures for efficient electrocatalytic hydrogen evolution in both acidic and alkaline media. Carbon2018, 139, 1–9.

    CAS  Google Scholar 

  60. Shah, S. A.; Shen, X. P.; Xie, M. H.; Zhu, G. X.; Ji, Z. Y.; Zhou, H. B.; Xu, K. Q.; Yue, X. Y.; Yuan, A. H.; Zhu, J. et al. Nickel@nitrogen-doped carbon@MoS2 nanosheets: An efficient electrocatalyst for hydrogen evolution reaction. Small2019, 15, 1804545.

    Google Scholar 

  61. Yu, S. H.; Chen, W. Z.; Wang, H. Y.; Pan, H.; Chua, D. H. C. Highly stable tungsten disulfide supported on a self-standing nickel phosphide foam as a hybrid electrocatalyst for efficient electrolytic hydrogen evolution. Nano Energy2019, 55, 193–202.

    CAS  Google Scholar 

  62. Zhou, H. Q.; Yu, F.; Huang, Y. F.; Sun, J. Y.; Zhu, Z.; Nielsen, R. J.; He, R.; Bao, J. M.; Goddard III, W. A.; Chen, S. et al. Efficient hydrogen evolution by ternary molybdenum sulfoselenide particles on self-standing porous nickel diselenide foam. Nat. Commun. 2016, 7, 12765.

    CAS  Google Scholar 

  63. Gong, Q. F.; Cheng, L.; Liu, C. H.; Zhang, M.; Feng, Q. L.; Ye, H. L.; Zeng, M.; Xie, L. M.; Liu, Z.; Li, Y. G. Ultrathin MoS2(1−x)Se2x alloy nanoflakes for electrocatalytic hydrogen evolution reaction. ACS Catal. 2015, 5, 2213–2219.

    CAS  Google Scholar 

  64. Liang, K.; Yan, Y.; Guo, L. M.; Marcus, K.; Li, Z.; Zhou, L.; Li, Y. L.; Ye, R. Q.; Orlovskaya, N.; Sohn, Y. H. et al. Strained W(SexS1−x)2 nanoporous films for highly efficient hydrogen evolution. ACS Energy Lett. 2017, 2, 1315–1320.

    CAS  Google Scholar 

  65. Xu, K.; Wang, F. M.; Wang, Z. X.; Zhan, X. Y.; Wang, Q. S.; Cheng, Z. Z.; Safdar, M.; He, J. Component-controllable WS2(1−x)Se2x nanotubes for efficient hydrogen evolution reaction. ACS nano2014, 8, 8468–8476.

    CAS  Google Scholar 

  66. Liu, K. L.; Wang, F. M.; Xu, K.; Shifa, T. A.; Cheng, Z. Z.; Zhan, X. Y.; He, J. CoS2xSe2(1−x) nanowire array: An efficient ternary electrocatalyst for the hydrogen evolution reaction. Nanoscale2016, 8, 4699–4704.

    CAS  Google Scholar 

  67. Shifa, T. A.; Wang, F. M.; Liu, K. L.; Cheng, Z. Z.; Xu, K.; Wang, Z. X.; Zhan, X. Y.; Jiang, C.; He, J. Efficient catalysis of hydrogen evolution reaction from WS2(1−x)P2x nanoribbons. Small2017, 13, 1603706.

    Google Scholar 

  68. Zou, M. L.; Chen, J. D.; Xiao, L. F.; Zhu, H.; Yang, T. T.; Zhang, M.; Du, M. L. WSe2 and W(SexS1−x)2 nanoflakes grown on carbon nanofibers for the electrocatalytic hydrogen evolution reaction. J. Mater. Chem. A2015, 3, 18090–18097.

    CAS  Google Scholar 

  69. Hong, W. T.; Jian, C. Y.; Wang, G. X.; He, X.; Li, J.; Cai, Q.; Wen, Z. H.; Liu, W. Self-supported nanoporous cobalt phosphosulfate electrodes for efficient hydrogen evolution reaction. Appl. Catal. B Environ. 2019, 251, 213–219.

    CAS  Google Scholar 

  70. Song, B.; Li, K.; Yin, Y.; Wu, T.; Dang, L.; Cabán-Acevedo, M.; Han, J. C.; Gao, T. L.; Wang, X. J.; Zhang Z. H. et al. Tuning mixed nickel iron phosphosulfide nanosheet electrocatalysts for enhanced hydrogen and oxygen evolution. ACS Catal. 2017, 7, 8549–8557.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 21771191 and 21875285), Taishan Scholar Foundation (No. ts201511019), the Shandong Natural Science Fund (No. ZR2017QB012) and the Fundamental Research Funds for the Central Universities (No. 19CX05001A).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fangna Dai or Daofeng Sun.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, J., Hu, X., Huang, Z. et al. Atomically thin defect-rich Ni-Se-S hybrid nanosheets as hydrogen evolution reaction electrocatalysts. Nano Res. 13, 2056–2062 (2020). https://doi.org/10.1007/s12274-020-2807-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-2807-8

Keywords

Navigation