Skip to main content
Log in

Enhanced singlet oxygen generation by hybrid Mn-doped nanocomposites for selective photo-oxidation of benzylic alcohols

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Transition-metal ions doped nanocrystals (NCs), specifically Mn-doped NCs, hold great potential in the field of photocatalysis, especially, to improve photocatalytic performance for singlet oxygen (1O2) generation. Here, we report the design of a novel Mn-doped NC-based nanocomposites, specifically, silica-coated Mn-doped CdS/ZnS NCs decorated with Pt NCs (denoted as Mn-NCs@SiO2-Pt), which enhance photocatalytic 1O2 generation. Owing to the long-lived Mn excited state (on the order of ms), the energy-transfer between Mn-NCs and molecular oxygen is facilitated with the assistance of the Pt NCs adhered to the Mn-NC@SiO2 surface. Therefore, the Mn-NCs@SiO2-Pt composites, integrate the advantages of Mn-doped NCs, a protective silica layer, and Pt NCs to exhibit excellent catalytic activity and selectivity for the selective oxidation of primary benzylic alcohols to aldehydes through an 1O2 engaged oxidation process under visible-light irradiation. This work paves the way for enhancing catalytic performance via facilitated energy transfer relaxation by utilizing the long-lived excited-state of Mn2+ dopant ions in nanocomposites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ghogare, A. A.; Greer, A. Using singlet oxygen to synthesize natural products and drugs. Chem. Rev.2016, 116, 9994–10034.

    CAS  Google Scholar 

  2. Doane, T. L.; Burda, C. The unique role of nanoparticles in nano-medicine: Imaging, drug delivery and therapy. Chem. Soc. Rev.2012, 41, 2885–2911.

    CAS  Google Scholar 

  3. Lucky, S. S.; Soo, K. C.; Zhang, Y. Nanoparticles in photodynamic therapy. Chem. Rev.2015, 115, 1990–2042.

    CAS  Google Scholar 

  4. Zhou, J.; Yang, Y.; Zhang, C. Y. Toward biocompatible semiconductor quantum dots: From biosynthesis and bioconjugation to biomedical application. Chem. Rev.2015, 115, 11669–11717.

    CAS  Google Scholar 

  5. Mallat, T.; Baiker, A. Oxidation of alcohols with molecular oxygen on solid catalysts. Chem. Rev.2004, 104, 3037–3058.

    CAS  Google Scholar 

  6. Guo, Z.; Liu, B.; Zhang, Q. H.; Deng, W. P.; Wang, Y. H.; Yang, Y. Recent advances in heterogeneous selective oxidation catalysis for sustainable chemistry. Chem. Soc. Rev.2014, 43, 3480–3524.

    CAS  Google Scholar 

  7. Nosaka, Y.; Nosaka, A. Y. Generation and detection of reactive oxygen species in photocatalysis. Chem. Rev.2017, 117, 11302–11336.

    CAS  Google Scholar 

  8. Cheng, L.; Wang, C.; Feng, L. Z.; Yang, K.; Liu, Z. Functional nanomaterials for phototherapies of cancer. Chem. Rev.2014, 114, 10869–10939.

    CAS  Google Scholar 

  9. Long, R.; Mao, K. K.; Ye, X. D.; Yan, W. S.; Huang, Y. B.; Wang, J. Y.; Fu, Y.; Wang, X. S.; Wu, X. J.; Xie, Y. et al. Surface facet of palladium nanocrystals: A key parameter to the activation of molecular oxygen for organic catalysis and cancer treatment. J. Am. Chem. Soc.2013, 135, 3200–3207.

    CAS  Google Scholar 

  10. Urakami, H.; Zhang, K.; Vilela, F. Modification of conjugated microporous poly-benzothiadiazole for photosensitized singlet oxygen generation in water. Chem. Commun.2013, 49, 2353–2355.

    CAS  Google Scholar 

  11. Lu, K. D.; He, C. B.; Lin, W. B. Nanoscale metal-organic framework for highly effective photodynamic therapy of resistant head and neck cancer. J. Am. Chem. Soc.2014, 136, 16712–16715.

    CAS  Google Scholar 

  12. Park, J.; Feng, D. W.; Yuan, S.; Zhou, H. C. Photochromic metal—organic frameworks: Reversible control of singlet oxygen generation. Angew. Chem., Int. Ed.2015, 54, 430–435.

    CAS  Google Scholar 

  13. Schilling, W.; Riemer, D.; Zhang, Y.; Hatami, N.; Das, S. Metal-free catalyst for visible-light-induced oxidation of unactivated alcohols using air/oxygen as an oxidant. ACS Catal.2018, 8, 5425–5430.

    CAS  Google Scholar 

  14. Li, Z. M.; Liu, C.; Abroshan, H.; Kauffman, D. R.; Li, G. Au38S2(SAdm)20 photocatalyst for one-step selective aerobic oxidations. ACS Catal.2017, 7, 3368–3374.

    CAS  Google Scholar 

  15. Wang, H.; Yang, X. Z.; Shao, W.; Chen, S. C.; Xie, J. F.; Zhang, X. D.; Wang, J.; Xie, Y. Ultrathin black phosphorus nanosheets for efficient singlet oxygen generation. J. Am. Chem. Soc.2015, 137, 11376–11382.

    CAS  Google Scholar 

  16. Vankayala, R.; Sagadevan, A.; Vijayaraghavan, P.; Kuo, C. L.; Hwang, K. C. Metal nanoparticles sensitize the formation of singlet oxygen. Angew. Chem., Int. Ed.2011, 50, 10640–10644.

    CAS  Google Scholar 

  17. Macia, N.; Bresoli-Obach, R.; Nonell, S.; Heyne, B. Hybrid silver nanocubes for improved plasmon-enhanced singlet oxygen production and inactivation of bacteria. J. Am. Chem. Soc.2019, 141, 684–692.

    CAS  Google Scholar 

  18. Wang, H.; Jiang, S. L.; Chen, S. S.; Li, D. D.; Zhang, X. D.; Shao, W.; Sun, X. S.; Xie, J. F.; Zhao, Z.; Zhang, Q. et al. Enhanced singlet oxygen generation in oxidized graphitic carbon nitride for organic synthesis. Adv. Mater.2016, 28, 6940–6945.

    CAS  Google Scholar 

  19. Chen, Y. Z.; Wang, Z. U.; Wang, H. W.; Lu, J. L.; Yu, S. H.; Jiang, H. L. Singlet oxygen-engaged selective photo-oxidation over Pt nanocrystals/porphyrinic MOF: The roles of photothermal effect and Pt electronic state. J. Am. Chem. Soc.2017, 139, 2035–2044.

    CAS  Google Scholar 

  20. Fujii, M.; Minobe, S.; Usui, M.; Hayashi, S.; Gross, E.; Diener, J.; Kovalev, D. Generation of singlet oxygen at room temperature mediated by energy transfer from photoexcited porous Si. Phys. Rev. B2004, 70, 085311.

    Google Scholar 

  21. Lakowicz, J. R. Principles of Fluorescence Spectroscopy, 3rd ed.; Springer: New York, USA, 2006.

    Google Scholar 

  22. Qi, J.; Ma, N.; Ma, X. C.; Adelung, R.; Yang, Y. Enhanced photocurrent in BiFeO3 materials by coupling temperature and thermo-phototronic effects for self-powered ultraviolet photodetector system. ACS Appl. Mater. Interfaces2018, 10, 13712–13719.

    CAS  Google Scholar 

  23. Lin, Z. H.; Cheng, G.; Yang, Y.; Zhou, Y. S.; Lee, S.; Wang, Z. L. Triboelectric nanogenerator as an active UV photodetector. Adv. Funct. Mater.2014, 24, 2810–2816.

    CAS  Google Scholar 

  24. Song, K.; Ma, N.; Yang, Y. Enhanced self-powered UV photoresponse of ferroelectric PZT materials by pyroelectric effect. Adv. Mater. Technol.2017, 2, 1700221.

    Google Scholar 

  25. Ouyang, B. S.; Zhang, K. W.; Yang, Y. Self-powered UV photodetector array based on P3HT/ZnO nanowire array heterojunction. Adv. Mater. Technol.2017, 2, 1700208.

    Google Scholar 

  26. Qi, J.; Ma, N.; Yang, Y. Photovoltaic—pyroelectric coupled effect based nanogenerators for self-powered photodetector system. Adv. Mater. Interfaces2018, 5, 1701189.

    Google Scholar 

  27. Ma, N.; Zhang, K. W.; Yang, Y. Photovoltaic—pyroelectric coupled effect induced electricity for self-powered photodetector system. Adv. Mater.2017, 29, 1703694.

    Google Scholar 

  28. Gao, T. T.; Ji, Y.; Yang, Y. Thermo-phototronic-effect-enhanced photodetectors based on porous ZnO materials. Adv. Electron. Mater.2019, 5, 1900776.

    CAS  Google Scholar 

  29. Yang, Y.; Guo, W.; Qi, J. J.; Zhao, J.; Zhang, Y. Self-powered ultraviolet photodetector based on a single Sb-doped ZnO nanobelt. Appl. Phys. Lett.2010, 97, 223113.

    Google Scholar 

  30. Guo, W.; Yang, Y.; Qi, J. J.; Zhao, J.; Zhang, Y. Localized ultraviolet photoresponse in single bent ZnO micro/nanowires. Appl. Phys. Lett.2010, 97, 133112.

    Google Scholar 

  31. Li, J.; Cai, S. Y.; Chen, J. T.; Zhao, Y. H.; Wang, D. Z. Visible light induced photocatalytic conversion of enamines into amides. Synlett2014, 25, 1626–1628.

    Google Scholar 

  32. Hildebrandt, N.; Spillmann, C. M.; Algar, W. R.; Pons, T.; Stewart, M. H.; Oh, E.; Susumu, K.; Díaz, S. A.; Delehanty, J. B.; Medintz, I. L. Energy transfer with semiconductor quantum dot bioconjugates: A versatile platform for biosensing, energy harvesting, and other developing applications. Chem. Rev.2017, 117, 536–711.

    CAS  Google Scholar 

  33. Duong, H. D.; Rhee, J. I. Singlet oxygen production by fluorescence resonance energy transfer (FRET) from green and orange CdSe/ZnS QDs to protoporphyrin IX (PpIX). Chem. Phys. Lett.2011, 501, 496–501.

    CAS  Google Scholar 

  34. Drozdek, S.; Szeremeta, J.; Lamch, L.; Nyk, M.; Samoc, M.; Wilk, K. A. Two-photon induced fluorescence energy transfer in polymeric nanocapsules containing CdSexS1−x/ZnS core/shell quantum dots and zinc(II) phthalocyanine. J. Phys. Chem. C2016, 120, 15460–15470.

    CAS  Google Scholar 

  35. Yang, J.; Muckel, F.; Baek, W.; Fainblat, R.; Chang, H.; Bacher, G.; Hyeon, T. Chemical synthesis, doping, and transformation of magic-sized semiconductor alloy nanoclusters. J. Am. Chem. Soc.2017, 139, 6761–6770.

    CAS  Google Scholar 

  36. Yang, X. L.; Pu, C. D.; Qin, H. Y.; Liu, S. J.; Xu, Z.; Peng, X. G. Temperature- and Mn2+ concentration-dependent emission properties of Mn2+-doped ZnSe nanocrystals. J. Am. Chem. Soc.2019, 141, 2288–2298.

    CAS  Google Scholar 

  37. White, M. A.; Weaver, A. L.; Beaulac, R.; Gamelin, D. R. Electrochemically controlled Auger quenching of Mn2+ photoluminescence in doped semiconductor nanocrystals. ACS Nano2011, 5, 4158–4168.

    CAS  Google Scholar 

  38. Wu, P.; Yan, X. P. Doped quantum dots for chemo/biosensing and bioimaging. Chem. Soc. Rev.2013, 42, 5489–5521.

    CAS  Google Scholar 

  39. Pradhan, N.; Das Adhikari, S.; Nag, A.; Sarma, D. D. Luminescence, plasmonic, and magnetic properties of doped semiconductor nanocrystals. Angew. Chem., Int. Ed.2017, 56, 7038–7054.

    CAS  Google Scholar 

  40. Beaulac, R.; Archer, P. I.; Ochsenbein, S. T.; Gamelin, D. R. Mn2+-doped CdSe quantum dots: New inorganic materials for spin-electronics and spin-photonics. Adv. Funct. Mater.2008, 18, 3873–3891.

    CAS  Google Scholar 

  41. Peng, B.; Liang, W.; White, M. A.; Gamelin, D. R.; Li, X. S. Theoretical evaluation of spin-dependent Auger de-excitation in Mn2+-doped semiconductor nanocrystals. J. Phys. Chem. C2012, 116, 11223–11231.

    CAS  Google Scholar 

  42. Li, Z. J.; Hofman, E.; Blaker, A.; Davis, A. H.; Dzikovski, B.; Ma, D. K.; Zheng, W. Interface engineering of Mn-doped ZnSe-based core/shell nanowires for tunable host—dopant coupling. ACS Nano2017, 11, 12591–12600.

    CAS  Google Scholar 

  43. Hofman, E.; Robinson, R. J.; Li, Z. J.; Dzikovski, B.; Zheng, W. Controlled dopant migration in CdS/ZnS core/shell quantum dots. J. Am. Chem. Soc.2017, 139, 8878–8885.

    CAS  Google Scholar 

  44. Falk, H.; Hübner, J.; Klar, P. J.; Heimbrodt, W. Intralayer and interlayer energy transfer from excitonic states into the Mn 3d5 shell in diluted magnetic semiconductor structures. Phys. Rev. B2003, 68, 165203.

    Google Scholar 

  45. Irvine, S. E.; Staudt, T.; Rittweger, E.; Engelhardt, J.; Hell, S. W. Direct light-driven modulation of luminescence from Mn-doped ZnSe quantum dots. Angew. Chem., Int. Ed.2008, 47, 2685–2688.

    CAS  Google Scholar 

  46. Dong, Y. T.; Choi, J.; Jeong, H. K.; Son, D. H. Hot electrons generated from doped quantum dots via upconversion of excitons to hot charge carriers for enhanced photocatalysis. J. Am. Chem. Soc.2015, 137, 5549–5554.

    CAS  Google Scholar 

  47. Dong, Y. T.; Parobek, D.; Rossi, D.; Son, D. H. Photoemission of energetic hot electrons produced via up-conversion in doped quantum dots. Nano Lett.2016, 16, 7270–7275.

    CAS  Google Scholar 

  48. Chen, H. Y.; Chen, T. Y.; Berdugo, E.; Park, Y.; Lovering, K.; Son, D. H. Hot electrons from consecutive exciton–Mn energy transfer in Mn-doped semiconductor nanocrystals. J. Phys. Chem. C2011, 115, 11407–11412.

    CAS  Google Scholar 

  49. Stewart, M. H.; Huston, A. L.; Scott, A. M.; Efros, A. L.; Melinger, J. S.; Gemmill, K. B.; Trammell, S. A.; Blanco-Canosa, J. B.; Dawson, P. E.; Medintz, I. L. Complex förster energy transfer interactions between semiconductor quantum dots and a redox-active osmium assembly. ACS Nano2012, 6, 5330–5347.

    CAS  Google Scholar 

  50. Kundu, S.; Patra, A. Nanoscale strategies for light harvesting. Chem. Rev.2017, 117, 712–757.

    CAS  Google Scholar 

  51. Santra, P. K.; Kamat, P. V. Mn-doped quantum dot sensitized solar cells: A strategy to boost efficiency over 5%. J. Am. Chem. Soc.2012, 134, 2508–2511.

    CAS  Google Scholar 

  52. Davis, A. H.; Hofman, E.; Chen, K.; Li, Z. J.; Khammang, A.; Zamani, H.; Franck, J. M.; Maye, M. M.; Meulenberg, R. W.; Zheng, W. Exciton energy shifts and tunable dopant emission in manganese-doped two-dimensional CdS/ZnS core/shell nanoplatelets. Chem. Mater.2019, 31, 2516–2523.

    CAS  Google Scholar 

  53. Porambo, M. W.; Howard, H. R.; Marsh, A. L. Dopant effects on the photocatalytic activity of colloidal zinc sulfide semiconductor nanocrystals for the oxidation of 2-chlorophenol. J. Phys. Chem. C2010, 114, 1580–1585.

    CAS  Google Scholar 

  54. Algar, W. R.; Khachatrian, A.; Melinger, J. S.; Huston, A. L.; Stewart, M. H.; Susumu, K.; Blanco-Canosa, J. B.; Oh, E.; Dawson, P. E.; Medintz, I. L. Concurrent modulation of quantum dot photoluminescence using a combination of charge transfer and förster resonance energy transfer: Competitive quenching and multiplexed biosensing modality. J. Am. Chem. Soc.2017, 139, 363–372.

    CAS  Google Scholar 

  55. Teegardin, K.; Day, J. I.; Chan, J.; Weaver, J. Advances in photocatalysis: A microreview of visible light mediated ruthenium and iridium catalyzed organic transformations. Org. Process Res. Dev.2016, 20, 1156–1163.

    CAS  Google Scholar 

  56. Wenger, O. S. Photoactive complexes with earth-abundant metals. J. Am. Chem. Soc.2018, 140, 13522–13533.

    CAS  Google Scholar 

  57. Kelly, C. B.; Patel, N. R.; Primer, D. N.; Jouffroy, M.; Tellis, J. C.; Molander, G. A. Preparation of visible-light-activated metal complexes and their use in photoredox/nickel dual catalysis. Nat. Protoc.2017, 12, 472–492.

    CAS  Google Scholar 

  58. Yang, J. H.; Wang, D. G.; Han, H. X.; Li, C. Roles of cocatalysts in photocatalysis and photoelectrocatalysis. Acc. Chem. Res.2013, 46, 1900–1909.

    CAS  Google Scholar 

  59. Ran, J. R.; Zhang, J.; Yu, J. G.; Jaroniec, M.; Qiao, S. Z. Earth-abundant cocatalysts for semiconductor-based photocatalytic water splitting. Chem. Soc. Rev.2014, 43, 7787–7812.

    CAS  Google Scholar 

  60. Wang, J.; Mora-Seró, I.; Pan, Z. X.; Zhao, K.; Zhang, H.; Feng, Y. Y.; Yang, G.; Zhong, X. H.; Bisquert, J. Core/shell colloidal quantum dot exciplex states for the development of highly efficient quantum-dot-sensitized solar cells. J. Am. Chem. Soc.2013, 135, 15913–15922.

    CAS  Google Scholar 

  61. Zhu, H. M.; Song, N. H.; Lv, H. J.; Hill, C. L.; Lian, T. Q. Near unity quantum yield of light-driven redox mediator reduction and efficient H2 generation using colloidal nanorod heterostructures. J. Am. Chem. Soc.2012, 134, 11701–11708.

    CAS  Google Scholar 

  62. Gao, X. Q.; Zhang, X. W.; Deng, K.; Han, B.; Zhao, L. Y.; Wu, M. H.; Shi, L.; Lv, J. W.; Tang, Z. Y. Excitonic circular dichroism of chiral quantum rods. J. Am. Chem. Soc.2017, 139, 8734–8739.

    CAS  Google Scholar 

  63. Graff, B. M.; Bloom, B. P.; Wierzbinski, E.; Waldeck, D. H. Electron transfer in nanoparticle dyads assembled on a colloidal template. J. Am. Chem. Soc.2016, 138, 13260–13270.

    CAS  Google Scholar 

  64. Li, Z. J.; Hofman, E.; Li, J.; Davis, A. H.; Tung, C. H.; Wu, L. Z.; Zheng, W. Photoelectrochemically active and environmentally stable CsPbBr3/TiO2 core/shell nanocrystals. Adv. Funct. Mater.2018, 28, 1704288.

    Google Scholar 

  65. Song, H.; Kim, F.; Connor, S.; Somorjai, G. A.; Yang, P. D. Pt nanocrystals: Shape control and langmuir—blodgett monolayer formation. J. Phys. Chem. B2005, 109, 188–193.

    CAS  Google Scholar 

  66. Watanabe, T.; Honda, K. Measurement of the extinction coefficient of the methyl viologen cation radical and the efficiency of its formation by semiconductor photocatalysis. J. Phys. Chem.1982, 86, 2617–2619.

    CAS  Google Scholar 

  67. Diaz-Diestra, D.; Beltran-Huarac, J.; Bracho-Rincon, D. P.; González-Feliciano, J. A.; González, C. I.; Weiner, B. R.; Morell, G. Biocompatible ZnS:Mn quantum dots for reactive oxygen generation and detection in aqueous media. J. Nanopart. Res.2015, 17, 461.

    Google Scholar 

  68. Makino, K.; Hagiwara, T.; Murakami, A. A mini review: Fundamental aspects of spin trapping with DMPO. Int. J. Radiat. Appl. Instrum. Part C. Radiat. Phys. Chem.1991, 37, 657–665.

    CAS  Google Scholar 

  69. Konaka, R.; Kasahara, E.; Dunlap, W. C.; Yamamoto, Y.; Chien, K. C.; Inoue, M. Ultraviolet irradiation of titanium dioxide in aqueous dispersion generates singlet oxygen. Redox Rep.2001, 6, 319–325.

    CAS  Google Scholar 

  70. Teranishi, T.; Hosoe, M.; Tanaka, T.; Miyake, M. Size control of monodispersed Pt nanoparticles and their 2D organization by electrophoretic deposition. J. Phys. Chem. B1999, 103, 3818–3827.

    CAS  Google Scholar 

  71. Huang, S. Q.; Li, Z. C.; Kong, L.; Zhu, N. W.; Shan, A. D.; Li, L. Enhancing the stability of CH3NH3PbBr3 quantum dots by embedding in silica spheres derived from tetramethyl orthosilicate in “waterless” toluene. J. Am. Chem. Soc.2016, 138, 5749–5752.

    CAS  Google Scholar 

  72. Zhang, Y. C.; He, S.; Guo, W. X.; Hu, Y.; Huang, J. W.; Mulcahy, J. R.; Wei, W. D. Surface-plasmon-driven hot electron photochemistry. Chem. Rev.2018, 118, 2927–2954.

    CAS  Google Scholar 

  73. Yu, S.; Fan, X. B.; Wang, X.; Li, J. G..; Zhang, Q.; Xia, A. D.; Wei, S. Q.; Wu, L. Z.; Zhou, Y.; Patzke, G. R. Efficient photocatalytic hydrogen evolution with ligand engineered all-inorganic InP and InP/ZnS colloidal quantum dots. Nat. Commun.2018, 9, 4009.

    Google Scholar 

  74. Luo, Y. R. Comprehensive Handbook of Chemical Bond Energies; CRC Press: Boca Raton, USA, 2007.

    Google Scholar 

Download references

Acknowledgements

W. Z. acknowledges the support from the start-up grant of Syracuse University, ACS-PRF (No. 59861-DNI5) and NSF CHE MSN (No. 05539CON04700). W. Z. appreciates the valuable discussion on the reaction mechanism with Prof. Timothy Korter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weiwei Zheng.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, ZJ., Li, S., Davis, A.H. et al. Enhanced singlet oxygen generation by hybrid Mn-doped nanocomposites for selective photo-oxidation of benzylic alcohols. Nano Res. 13, 1668–1676 (2020). https://doi.org/10.1007/s12274-020-2790-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-2790-0

Keywords

Navigation