Skip to main content
Log in

Recent advances towards single biomolecule level understanding of protein adsorption phenomena unique to nanoscale polymer surfaces with chemical variations

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Protein adsorption onto polymer surfaces is a very complex and ubiquitous phenomenon whose integrated process impacts essential applications in our daily lives such as food packaging materials, health devices, diagnostic tools, and medical products. Increasingly, novel polymer materials with greater chemical intricacy and reduced dimensionality are used for various applications involving adsorbed proteins on their surfaces. Hence, the nature of protein-surface interactions to consider is becoming much more complicated than before. A large body of literature exists for protein adsorption. However, most of these investigations have focused on collectively measured, ensemble-averaged protein behaviors that occur on macroscale and chemically unvarying polymer surfaces instead of direct measurements at the single protein or sub-protein level. In addition, interrogations of protein-polymer adsorption boundaries in these studies were typically carried out by indirect methods, whose insights may not be suitably applied for explaining individual protein adsorption processes occurring onto nanostructured, chemically varying polymer surfaces. Therefore, an important gap in our knowledge still exists that needs to be systematically addressed via direct measurement means at the single protein and sub-protein level. Such efforts will require multifaceted experimental and theoretical approaches that can probe multilength scales of protein adsorption, while encompassing both single proteins and their collective ensemble behaviors at the length scale spanning from the nanoscopic all the way to the macroscopic scale. In this review, key research achievements in nanoscale protein adsorption to date will be summarized. Specifically, protein adsorption studies involving polymer surfaces with their defining feature dimensions and associated chemical partitions comparable to the size of individual proteins will be discussed in detail. In this regard, recent works bridging the crucial knowledge gap in protein adsorption will be highlighted. New findings of intriguing protein surface assembly behaviors and adsorption kinetics unique to nanoscale polymer templates will be covered. Single protein and sub-protein level approaches to reveal unique nanoscale protein-polymer surface interactions and protein surface assembly characteristics will be also emphasized. Potential advantages of these research endeavors in laying out fundamentally guided design principles for practical product development will then be discussed. Lastly, important research areas still needed to further narrow the knowledge gap in nanoscale protein adsorption will be identified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nakanishi, K.; Sakiyama, T.; Imamura, K. On the adsorption of proteins on solid surfaces, a common but very complicated phenomenon. J. Biosci. Bioeng.2001, 91, 233–244.

    Article  CAS  Google Scholar 

  2. Dee, K. C.; Puleo, D. A.; Bizios, R. Protein-surface interactions. In Tissue-Biomaterial Interactions; John Wiley & Sons Inc.: Hoboken, NJ, USA, 2002; pp 37–52.

    Chapter  Google Scholar 

  3. Slack, S. M.; Horbett, T. A. The vroman effect: A critical review. In Proteins at Interfaces II: Fundamentals and Applications; Horbett, T. A.; Brash, J. L., Eds.; ACS: Washington, DC, USA, 1995; pp 112–128.

    Chapter  Google Scholar 

  4. Warkentin, P. H.; Lundstrom, I.; Tengvall, P. Protein–protein interactions affecting proteins at surfaces. In Proteins at Interfaces II: Fundamentals and Applications; Horbett, T. A.; Brash, J. L., Eds.; ACS: Washignton, DC, USA, 1995; pp 163–180.

    Chapter  Google Scholar 

  5. Latour, R. A. Biomaterials: Protein–surface interactions. In Encyclopedia of Biomaterials and Biomedical Engineering; Informa Healthcare: New York, N Y, USA, 2008; pp 270–284.

    Google Scholar 

  6. Ratner, B. D.; Bryant, S. J. Biomaterials: Where we have been and where we are going. Annu. Rev. Biomed. Eng.2004, 6, 41–75.

    Article  CAS  Google Scholar 

  7. Horbett, T. A. The role of adsorbed proteins in tissue response to biomaterials. In Biomaterials Science: An Introduction to Materials in Medicine; Ratner, B. D.; Hoffman, A. S.; Schoen, F. J.; Lemons, J. E., Eds.; Elsevier Academic Press: New York, NY, USA, 2004; pp 237–246.

    Google Scholar 

  8. Ramsden, J. J. Puzzles and paradoxes in protein adsorption. Chem. Soc. Rev.1995, 24, 73–78.

    Article  CAS  Google Scholar 

  9. Hlady, V.; Buijs, J. Protein adsorption on solid surfaces. Curr. Opin. Biotechnol.1996, 7, 72–77.

    Article  CAS  Google Scholar 

  10. Gray, J. J. The interaction of proteins with solid surfaces. Curr. Opin. Struct. Biol.2004, 14, 110–115.

    Article  CAS  Google Scholar 

  11. Firkowska-Boden, I.; Zhang, X. Y.; Jandt, K. D. Controlling protein adsorption through nanostructured polymeric surfaces. Adv. Healthc. Mater.2018, 7, 1700995.

    Article  CAS  Google Scholar 

  12. Talapatra, A.; Rouse, R.; Hardiman, G. Protein microarrays: Challenges and promises. Pharmacogenomics2002, 3, 1–10.

    Article  Google Scholar 

  13. Ekins, R.; Chu, F. Immunoassay and other ligand assays: Present status and future trends. J. Int. Fed. Clin. Chem.1997, 9, 100–109.

    CAS  Google Scholar 

  14. Gong, P.; Grainger, D. W. Microarrays: Methods and Protocols, 2nd ed.; Humana Press: NJ, 2007.

    Google Scholar 

  15. MacBeath, G. Protein microarrays and proteomics. Nat. Genet.2002, 32, 526–532.

    Article  CAS  Google Scholar 

  16. MacBeath, G.; Schreiber, S. L. Printing proteins as microarrays for high-throughput function determination. Science2000, 289, 1760–1763.

    CAS  Google Scholar 

  17. Pavlickova, P.; Schneider, E. M.; Hug, H. Advances in recombinant antibody microarrays. Clin. Chim. Acta2004, 343, 17–35.

    Article  CAS  Google Scholar 

  18. Templin, M. F.; Stoll, D.; Schrenk, M.; Traub, P. C.; Vöhringer, C. F.; Joos, T. O. Protein microarray technology. Trends Biotechnol.2002, 20, 160–166.

    Article  CAS  Google Scholar 

  19. Xu, Q. C.; Lam, K. S. Protein and chemical microarrays-powerful tools for proteomics. J. Biomed. Biotechnol.2003, 2003, 257–266.

    Article  Google Scholar 

  20. Horbett, T. A. Biological activity of adsorbed proteins. In Biopolymers at Interfaces; Malmsten, M., Ed.; CRC Press: New York, NY, USA, 2003; pp 393–414.

    Google Scholar 

  21. Ratner, B. D.; Hoffman, A. S.; Schoen, F. J.; Lemons, J. E. Biomaterials Science: An Introduction to Materials in Medicine, 3rd ed.; Elsevier Science: Waltham, MA, USA, 2012.

    Google Scholar 

  22. Shen, M. C.; Martinson, L.; Wagner, M. S.; Castner, D. G.; Ratner, B. D.; Horbett, T. A. PEO-like plasma polymerized tetraglyme surface interactions with leukocytes and proteins: In vitro and in vivo studies. J. Biomater. Sci. Polym. Ed.2002, 13, 367–390.

    Article  CAS  Google Scholar 

  23. Wei, Q.; Becherer, T.; Angioletti-Uberti, S.; Dzubiella, J.; Wischke, C.; Neffe, A. T.; Lendlein, A.; Ballauff, M.; Haag, R. Protein interactions with polymer coatings and biomaterials. Angew. Chem., Int. Ed.2014, 53, 8004–8031.

    Article  CAS  Google Scholar 

  24. Liao, J. W.; Zhu, Y.; Zhou, Z. N.; Chen, J. Q.; Tan, G. X.; Ning, C. Y.; Mao, C. B. Reversibly controlling preferential protein adsorption on bone implants by using an applied weak potential as a switch. Angew. Chem., Int. Ed.2014, 53, 13068–13072.

    Article  CAS  Google Scholar 

  25. Joh, D. Y.; Hucknall, A. M.; Wei, Q. S.; Mason, K. A.; Lund, M. L.; Fontes, C. M.; Hill, R. T.; Blair, R.; Zimmers, Z.; Achar, R. K. et al. Inkjet-printed point-of-care immunoassay on a nanoscale polymer brush enables subpicomolar detection of analytes in blood. Proc. Natl. Acad. Sci. USA2017, 114, E7054–E7062.

    Article  CAS  Google Scholar 

  26. Hahm, J. I. Polymeric surface-mediated, high-density nano-assembly of functional protein arrays. J. Biomed. Nanotechnol.2011, 7, 731–742.

    Article  CAS  Google Scholar 

  27. Hahm, J. Fundamentals of nanoscale polymer-protein interactions and potential contributions to solid-state nanobioarrays. Langmuir2014, 30, 9891–9904.

    Article  CAS  Google Scholar 

  28. Denis, F. A.; Hanarp, P.; Sutherland, D. S.; Gold, J.; Mustin, C.; Rouxhet, P. G.; Dufrêne, Y. F. Protein adsorption on model surfaces with controlled nanotopography and chemistry. Langmuir2002, 18, 819–828.

    Article  CAS  Google Scholar 

  29. Lord, M. S.; Foss, M.; Besenbacher, F. Influence of nanoscale surface topography on protein adsorption and cellular response. Nano Today2010, 5, 66–78.

    Article  CAS  Google Scholar 

  30. Cai, K. Y.; Bossert, J.; Jandt, K. D. Does the nanometre scale topography of titanium influence protein adsorption and cell proliferation? Colloids Surf. B: Biointerfaces2006, 49, 136–144.

    Article  CAS  Google Scholar 

  31. Laforgue, A.; Bazuin, C. G.; Prud’homme, R. E. A Study of the supramolecular approach in controlling diblock copolymer nano-patterning and nanoporosity on surfaces. Macromolecules2006, 39, 6473–6482.

    Article  CAS  Google Scholar 

  32. Walkey, C. D.; Olsen, J. B.; Guo, H. B.; Emili, A.; Chan, W. C. W. Nanoparticle size and surface chemistry determine serum protein adsorption and macrophage uptake. J. Am. Chem. Soc.2012, 134, 2139–2147.

    Article  CAS  Google Scholar 

  33. Shull, K. R. Mean-field theory of block copolymers: Bulk melts, surfaces, and thin films. Macromolecules1992, 25, 2122–2133.

    Article  CAS  Google Scholar 

  34. Bates, F. S.; Fredrickson, G. H. Block copolymer thermodynamics: Theory and experiment. Annu. Rev. Phys. Chem.1990, 41, 525–557.

    Article  CAS  Google Scholar 

  35. Fredrickson, G. H.; Bates, F. S. Dynamics of block copolymers: Theory and experiment. Annu. Rev. Mater. Sci.1996, 26, 501–550.

    Article  CAS  Google Scholar 

  36. Darling, S. B. Directing the self-assembly of block copolymers. Prog. Polym. Sci.2007, 32, 1152–1204.

    Article  CAS  Google Scholar 

  37. Malmström, J.; Travas-Sejdic, J. Block copolymers for protein ordering. J. Appl. Polym. Sci.2014, 131, 40360.

    Article  CAS  Google Scholar 

  38. Hahm, J.; Sibener, S. J. Time-resolved atomic force microscopy imaging studies of asymmetric PS-b-PMMA ultrathin films: Dislocation and disclination transformations, defect mobility, and evolution of nanoscale morphology. J. Chem. Phys.2001, 114, 4730–4740.

    Article  CAS  Google Scholar 

  39. Morkved, T. L.; Lopes, W. A.; Hahm, J.; Sibener, S. J.; Jaeger, H. M. Silicon nitride membrane substrates for the investigation of local structure in polymer thin films. Polymer1998, 39, 3871–3875.

    Article  CAS  Google Scholar 

  40. Park, M.; Harrison, C.; Chaikin, P. M.; Register, R. A.; Adamson, D. H. Block copolymer lithography: Periodic arrays of ~1011 holes in 1 square centimeter. Science1997, 276, 1401–1404.

    Article  CAS  Google Scholar 

  41. Thomas, E. L.; Lescanec, R. L. Phase morphology in block copolymer systems. Phil. Trans. R. Soc. London A1994, 348, 149–166.

    Article  CAS  Google Scholar 

  42. Matsen, M. W. Self-assembly of block copolymers in thin films. Curr. Opin. Colloid Interface Sci.1998, 3, 40–47.

    Article  CAS  Google Scholar 

  43. Fredrickson, G. H. Surface ordering phenomena in block copolymer melts. Macromolecules1987, 20, 2535–2542.

    Article  CAS  Google Scholar 

  44. Song, S.; Milchak, M.; Zhou, H. B.; Lee, T.; Hanscom, M.; Hahm, J. I. Elucidation of novel nanostructures by time-lapse monitoring of polystyrene-block-polyvinylpyridine under chemical treatment. Langmuir2012, 28, 8384–8391.

    Article  CAS  Google Scholar 

  45. Song, S.; Milchak, M.; Zhou, H. B.; Lee, T.; Hanscom, M.; Hahm, J. I. Nanoscale protein arrays of rich morphologies via self-assembly on chemically treated diblock copolymer surfaces. Nanotechnology2013, 24, 095601.

    Article  CAS  Google Scholar 

  46. Li, X.; Peng, J.; Wen, Y.; Kim, D. H.; Knoll, W. Morphology change of asymmetric diblock copolymer micellar films during solvent annealing. Polymer2007, 48, 2434–2443.

    Article  CAS  Google Scholar 

  47. Peng, J.; Kim, D. H.; Knoll, W.; Xuan, Y.; Li, B. Y.; Han, Y. C. Morphologies in solvent-annealed thin films of symmetric diblock copolymer. J. Chem. Phys.2006, 125, 064702.

    Article  CAS  Google Scholar 

  48. Bates, F. S.; Fredrickson, G. H. Block copolymers-designer soft materials. Phys. Today1999, 52, 32–38.

    Article  CAS  Google Scholar 

  49. Khandpur, A. K.; Foerster, S.; Bates, F. S.; Hamley, I. W.; Ryan, A. J.; Bras, W.; Almdal, K.; Mortensen, K. Polyisoprene-polystyrene diblock copolymer phase diagram near the order-disorder transition. Macromolecules1995, 28, 8796–8806.

    Article  CAS  Google Scholar 

  50. Rechendorff, K.; Hovgaard, M. B.; Foss, M.; Zhdanov, V. P.; Besenbacher, F. Enhancement of protein adsorption induced by surface roughness. Langmuir2006, 22, 10885–10888.

    Article  CAS  Google Scholar 

  51. Roach, P.; Farrar, D.; Perry, C. C. Interpretation of protein adsorption: ?Surface-induced conformational changes. J. Am. Chem. Soc.2005, 127, 8168–8173.

    Article  CAS  Google Scholar 

  52. Han, M.; Sethuraman, A.; Kane, R. S.; Belfort, G. Nanometer-scale roughness having little effect on the amount or structure of adsorbed protein. Langmuir2003, 19, 9868–9872.

    Article  CAS  Google Scholar 

  53. Roach, P.; Farrar, D.; Perry, C. C. Surface tailoring for controlled protein adsorption: Effect of topography at the nanometer scale and chemistry. J. Am. Chem. Soc.2006, 128, 3939–3945.

    Article  CAS  Google Scholar 

  54. Cheng, Y. L.; Darst, S. A.; Robertson, C. R. Bovine serum albumin adsorption and desorption rates on solid surfaces with varying surface properties. J. Colloid Interface Sci.1987, 11 8, 212–223.

    Article  CAS  Google Scholar 

  55. Wertz, C. F.; Santore, M. M. Adsorption and relaxation kinetics of albumin and fibrinogen on hydrophobic surfaces: Single-species and competitive behavior. Langmuir1999, 15, 8884–8894.

    Article  CAS  Google Scholar 

  56. Wertz, C. F.; Santore, M. M. Effect of surface hydrophobicity on adsorption and relaxation kinetics of albumin and fibrinogen: Single-species and competitive behavior. Langmuir2001, 17, 3006–3016.

    Article  CAS  Google Scholar 

  57. Wertz, C. F.; Santore, M. M. Adsorption and reorientation kinetics of lysozyme on hydrophobic surfaces. Langmuir2002, 18, 1190–1199.

    Article  CAS  Google Scholar 

  58. Vroman, L.; Adams, A. L.; Fischer, G. C.; Munoz, P. C. Interaction of high molecular weight kininogen, factor XII, and fibrinogen in plasma at interfaces. Blood1980, 55, 156–159.

    Article  CAS  Google Scholar 

  59. Ying, P. Q.; Yu, Y.; Jin, G.; Tao, Z. L. Competitive protein adsorption studied with atomic force microscopy and imaging ellipsometry. Colloids Surf. B: Biointerfaces2003, 32, 1–10.

    Article  CAS  Google Scholar 

  60. Day, R.; Daggett, V. Ensemble versus single-molecule protein unfolding. Proc. Natl. Acad. Sci. USA2005, 102, 13445–13450.

    Article  CAS  Google Scholar 

  61. McLoughlin, S. Y.; Kastantin, M.; Schwartz, D. K.; Kaar, J. L. Single-molecule resolution of protein structure and interfacial dynamics on biomaterial surfaces. Proc. Natl. Acad. Sci. USA2013, 110, 19396–19401.

    Article  CAS  Google Scholar 

  62. Tinoco, I.; Gonzalez, R. L. Biological mechanisms, one molecule at a time. Genes Dev.2011, 25, 1205–1231.

    Article  CAS  Google Scholar 

  63. Migliorini, E.; Weidenhaupt, M.; Picart, C. Practical guide to characterize biomolecule adsorption on solid surfaces (review). Biointerphases2018, 13, 06D303.

    Article  CAS  Google Scholar 

  64. Song, S.; Ravensbergen, K.; Alabanza, A.; Soldin, D.; Hahm, J. I. Distinct adsorption configurations and self-assembly characteristics of fibrinogen on chemically uniform and alternating surfaces including block copolymer nanodomains. ACS Nano2014, 8, 5257–5269.

    Article  CAS  Google Scholar 

  65. Toscano, A.; Santore, M. M. Fibrinogen adsorption on three silica-based surfaces: Conformation and kinetics. Langmuir2006, 22, 2588–2597.

    Article  CAS  Google Scholar 

  66. Keller, T. F.; Schönfelder, J.; Reichert, J.; Tuccitto, N.; Licciardello, A.; Messina, G. M. L.; Marletta, G.; Jandt, K. D. How the surface nanostructure of polyethylene affects protein assembly and orientation. ACS Nano2011, 5, 3120–3131.

    Article  CAS  Google Scholar 

  67. Kidoaki, S.; Matsuda, T. Adhesion forces of the blood plasma proteins on self-assembled monolayer surfaces of alkanethiolates with different functional groups measured by an atomic force microscope. Langmuir1999, 15, 7639–7646.

    Article  CAS  Google Scholar 

  68. Müller, D. J.; Janovjak, H.; Lehto, T.; Kuerschner, L.; Anderson, K. Observing structure, function and assembly of single proteins by AFM. Prog. Biophys. Mol. Biol.2002, 79, 1–43.

    Article  Google Scholar 

  69. Smith, P. K.; Krohn, R. I.; Hermanson, G. T.; Mallia, A. K.; Gartner, F. H.; Provenzano, M. D.; Fujimoto, E. K.; Goeke, N. M.; Olson, B. J.; Klenk, D. C. Measurement of protein using bicinchoninic acid. Anal. Biochem.1985, 150, 76–85.

    Article  CAS  Google Scholar 

  70. Ball, V.; Ramsden, J. J. Absence of surface exclusion in the first stage of lysozyme adsorption is driven through electrostatic self-assembly. J. Phys. Chem. B1997, 101, 5465–5469.

    Article  CAS  Google Scholar 

  71. Calonder, C.; Tie, Y.; Van Tassel, P. R. History dependence of protein adsorption kinetics. Proc. Nat. Acad. Sci. USA2001, 98, 10664–10669.

    Article  CAS  Google Scholar 

  72. Tie, Y. R.; Calonder, C.; Van Tassel, P. R. Protein adsorption: Kinetics and history dependence. J. Colloid Interface Sci.2003, 268, 1–11.

    Article  CAS  Google Scholar 

  73. Michel, R.; Pasche, S.; Textor, M.; Castner, D. G. Influence of PEG architecture on protein adsorption and conformation. Langmuir2005, 21, 12327–12332.

    Article  CAS  Google Scholar 

  74. Wagner, M. S.; McArthur, S. L.; Shen, M. C.; Horbett, T. A.; Castner, D. G. Limits of detection for time of flight secondary ion mass spectrometry (ToF-SIMS) and X-ray photoelectron spectroscopy (XPS): Detection of low amounts of adsorbed protein. J. Biomater. Sci. Polym. Ed.2002, 13, 407–428.

    Article  CAS  Google Scholar 

  75. Hitchcock, A. P.; Leung, B. O.; Brash, J. L.; Scholl, A.; Doran, A. Soft X-ray spectromicroscopy of protein interactions with phase-segregated polymer surfaces. In Proteins at Interfaces III, State of the Art; American Chemical Society: Washington, DC, USA, 2012; pp 731–760.

    Google Scholar 

  76. Leung, B. O.; Wang, J.; Brash, J. L.; Hitchcock, A. P. Imaging hydrated albumin on a polystyrene-poly(methyl methacrylate) blend surface with X-ray spectromicroscopy. Langmuir2009, 25, 13332–13335.

    Article  CAS  Google Scholar 

  77. Welsch, N.; Lu, Y; Dzubiella, J.; Ballauff, M. Adsorption of proteins to functional polymeric nanoparticles. Polymer2013, 54, 2835–2849.

    Article  CAS  Google Scholar 

  78. Wang, J.; Buck, S. M.; Chen, Z. Sum frequency generation vibrational spectroscopy studies on protein adsorption. J. Phys. Chem. B2002, 106, 11666–11672.

    Article  CAS  Google Scholar 

  79. Chen, X. Y; Wang, J.; Paszti, Z.; Wang, F. L.; Schrauben, J. N.; Tarabara, V. V.; Schmaier, A. H; Chen, Z. Ordered adsorption of coagulation factor XII on negatively charged polymer surfaces probed by sum frequency generation vibrational spectroscopy. Anal. Bioanal. Chem.2007, 388, 65–72.

    Article  CAS  Google Scholar 

  80. Vaisocherová, H; Yang, W.; Zhang, Z.; Cao, Z. Q.; Cheng, G; Piliarik, M.; Homola, J.; Jiang, S. Y Ultralow fouling and functionalizable surface chemistry based on a zwitterionic polymer enabling sensitive and specific protein detection in undiluted blood plasma. Anal. Chem.2008, 80, 7894–7901.

    Article  CAS  Google Scholar 

  81. Breault-Turcot, J.; Chaurand, P.; Masson, J. F. Unravelling nonspecific adsorption of complex protein mixture on surfaces with SPR and MS. Anal. Chem.2014, 86, 9612–9619.

    Article  CAS  Google Scholar 

  82. Shumaker-Parry, J. S.; Campbell, C. T. Quantitative methods for spatially resolved adsorption/desorption measurements in real time by surface plasmon resonance microscopy. Anal. Chem.2004, 76, 907–917.

    Article  CAS  Google Scholar 

  83. Lau, K. H. A.; Bang, J.; Hawker, C. J.; Kim, D. H; Knoll, W. Modulation of protein-surface interactions on nanopatterned polymer films. Biomacromolecules2009, 10, 1061–1066.

    Article  CAS  Google Scholar 

  84. Lau, K. H. A.; Bang, J.; Kim, D. H; Knoll, W. Self-assembly of protein nanoarrays on block copolymer templates. Adv. Funct. Mater.2008, 18, 3148–3157.

    Article  CAS  Google Scholar 

  85. Hänel, C; Gauglitz, G. Comparison of reflectometric interference spectroscopy with other instruments for label-free optical detection. Anal. Bioanal. Chem.2002, 372, 91–100.

    Article  CAS  Google Scholar 

  86. Passmore, L. A.; Russo, C. J. Specimen preparation for high-resolution cryo-EM. Methods Enzymol.2016, 579, 51–86.

    Article  CAS  Google Scholar 

  87. Weisel, J. W.; Stauffacher, C. V.; Bullitt, E.; Cohen, C. A model for fibrinogen: Domains and sequence. Science1985, 230, 1388–1391.

    Article  CAS  Google Scholar 

  88. Weisel, J. W.; Phillips, G N.; Cohen, C. A model from electron microscopy for the molecular structure of fibrinogen and fibrin. Nature1981, 289, 263–267.

    Article  CAS  Google Scholar 

  89. Veklich, Y I.; Gorkun, O. V.; Medved, L. V.; Nieuwenhuizen, W.; Weisel, J. W. Carboxyl-terminal portions of the α chains of fibrinogen and fibrin. Localization by electron microscopy and the effects of isolated αC fragments on polymerization. J. Biol. Chem.1993, 268, 13577–13585.

    CAS  Google Scholar 

  90. Pfreundschuh, M.; Martinez-Martin, D.; Mulvihill, E.; Wegmann, S.; Muller, D. J. Multiparametric high-resolution imaging of native proteins by force-distance curve-based AFM. Nat. Protoc.2014, 9, 1113–1130.

    Article  CAS  Google Scholar 

  91. Kumar, N.; Hahm, J. Nanoscale protein patterning using self-assembled diblock copolymers. Langmuir2005, 21, 6652–6655.

    Article  CAS  Google Scholar 

  92. Zhang, X. Y; Firkowska-Boden, I.; Arras, M. M. L.; Kastantin, M. J.; Helbing, C; Özogul, A.; Gnecco, E.; Schwartz, D. K; Jandt, K. D. Nanoconfinement and sansetsukon-like nanocrawling govern fibrinogen dynamics and self-assembly on nanostructured polymeric surfaces. Langmuir2018, 34, 14309–14316.

    Article  CAS  Google Scholar 

  93. Leśnierowski, G; Cegielska-Radziejewska, R. Potential possibilities of production, modification and practical application of lysozyme. Acta Sci. Pol. Technol. Aliment2012, 11, 223–230.

    Google Scholar 

  94. Wei, T.; Carignano, M. A.; Szleifer, I. Lysozyme adsorption on polyethylene surfaces: Why are long simulations needed? Langmuir2011, 27, 12074–12081.

    Article  CAS  Google Scholar 

  95. Ley, K.; Christofferson, A.; Penna, M.; Winkler, D.; Maclaughlin, S.; Yarovsky, I. Surface-water interface induces conformational changes critical for protein adsorption: Implications for monolayer formation of EAS hydrophobin. Front. Mol. Biosci.2015, 2, 64.

    Article  CAS  Google Scholar 

  96. Kisko, K.; Szilvay, G. R.; Vainio, U.; Linder, M. B.; Serimaa, R. Interactions of hydrophobin proteins in solution studied by small-angle X-ray scattering. Biophys. J.2008, 94, 198–206.

    Article  CAS  Google Scholar 

  97. Francis, G. L. Albumin and mammalian cell culture: Implications for biotechnology applications. Cytotechnology2010, 62, 1–16.

    Article  CAS  Google Scholar 

  98. Pastor, M.; Esquisabel, A.; Pedraz, J. L. Biomedical applications of immobilized enzymes: An update. In Immobilization of Enzymes and Cells, 3rd ed.; Guisan, J. M., Ed.; Humana Press: Totowa, NJ, USA, 2013; pp 285–299.

    Chapter  Google Scholar 

  99. Cahill, D. J. Protein and antibody arrays and their medical applications. J. Immunol. Methods2001, 250, 81–91.

    Article  CAS  Google Scholar 

  100. Wang, W.; Knovich, M. A.; Coffman, L. G.; Torti, F. M.; Torti, S. V. Serum ferritin: Past, present and future. Biochim. Biophys. Acta2010, 1800, 760–769.

    Article  CAS  Google Scholar 

  101. Joo, J. Y.; Amin, M. L.; Rajangam, T.; An, S. S. A. Fibrinogen as a promising material for various biomedical applications. Mol. Cell. Toxicol.2015, 11, 1–9.

    Article  CAS  Google Scholar 

  102. Petrie, T. A.; Reyes, C. D.; Burns, K. L.; García, A. J. Simple application of fibronectin-mimetic coating enhances osseointegration of titanium implants. J. Cell. Mol. Med.2009, 13, 2602–2612.

    Article  Google Scholar 

  103. Dargahi, M.; Nelea, V.; Mousa, A.; Omanovic, S.; Kaartinen, M. T. Electrochemical modulation of plasma fibronectin surface conformation enables filament formation and control of endothelial cell–surface interactions. RSC Adv.2014, 4, 47769–47780.

    Article  CAS  Google Scholar 

  104. Kumar, N.; Parajuli, O.; Gupta, A.; Hahm, J. Elucidation of protein adsorption behavior on polymeric surfaces: Towards high density, high payload, protein templates. Langmuir2008, 24, 2688–2694.

    Article  CAS  Google Scholar 

  105. Kumar, N.; Parajuli, O.; Hahm, J. Two-dimensionally self-arranged protein nanoarrays on diblock copolymer templates. J. Phys. Chem. B2007, 111, 4581–4587.

    Article  CAS  Google Scholar 

  106. Palacio, M. L. B.; Schricker, S. R.; Bhushan, B. Bioadhesion of various proteins on random, diblock and triblock copolymer surfaces and the effect of pH conditions. J. R. Soc. Interface2011, 8, 630–640.

    Article  CAS  Google Scholar 

  107. Kumar, N.; Parajuli, O.; Dorfman, A.; Kipp, D.; Hahm, J. Activity study of self-assembled proteins on nanoscale diblock copolymer templates. Langmuir2007, 23, 7416–7422.

    Article  CAS  Google Scholar 

  108. Parajuli, O.; Gupta, A.; Kumar, N.; Hahm, J. Evaluation of enzymatic activity on nanoscale polystyrene-block-polymethylmethacrylate diblock copolymer domains. J. Phys. Chem. B2007, 111, 14022–14027.

    Article  CAS  Google Scholar 

  109. Ibrahim, S.; Ito, T. Surface chemical properties of nanoscale domains on UV-treated polystyrene–poly(methyl methacrylate) diblock copolymer films studied using scanning force microscopy. Langmuir2010, 26, 2119–2123.

    Article  CAS  Google Scholar 

  110. van Damme, H. S.; Beugeling, T.; Ratering, M. T.; Feijen, J. Protein adsorption from plasma onto poly(n-alkyl methacrylate) surfaces. J. Biomater. Sci. Polym. Ed.1991, 3, 69–84.

    Article  Google Scholar 

  111. Nyström, M.; Järvinen, P. Modification of polysulfone ultrafiltration membranes with UV irradiation and hydrophilicity increasing agents. J. Memb. Sci.1991, 60, 275–296.

    Article  Google Scholar 

  112. Bamford, C. H.; Cooper, S. L.; Tsuruta, T. The Vroman Effect; VSP BV: Utrecht, The Netherlands, 1992.

    Google Scholar 

  113. Jones, S.; Thornton, J. M. Principles of protein-protein interactions. Proc. Nat. Acad. Sci. USA1996, 93, 13–20.

    Article  CAS  Google Scholar 

  114. Musale, D. A.; Kulkarni, S. S. Fouling reduction in poly(acrylonitrile-co-acrylamide) ultrafiltration membranes. J. Memb. Sci.1996, 111, 49–56.

    Article  CAS  Google Scholar 

  115. Hester, J. F.; Banerjee, P.; Mayes, A. M. Preparation of protein-resistant surfaces on poly(vinylidene fluoride) membranes via surface segregation. Macromolecules1999, 32, 1643–1650.

    Article  CAS  Google Scholar 

  116. Douillard, R.; Daoud, M.; Aguié-Béghin, V. Polymer thermodynamics of adsorbed protein layers. Curr. Opin. Colloid Interface Sci.2003, 8, 380–386.

    Article  CAS  Google Scholar 

  117. Absolom, D. R.; Zingg, W.; Neumann, A. W. Protein adsorption to polymer particles: Role of surface properties. J. Biomed. Mater. Res.1987, 21, 161–171.

    Article  CAS  Google Scholar 

  118. Holmberg, M.; Stibius, K.; Larsen, N. B.; Hou, X. L. Competitive protein adsorption to polymer surfaces from human serum. J. Mater. Sci: Mater. Med.2008, 19, 2179–2185.

    CAS  Google Scholar 

  119. Gessner, A.; Waicz, R.; Lieske, A.; Paulke, B. R.; Mäder, K.; Müller, R. H. Nanoparticles with decreasing surface hydrophobicities: Influence on plasma protein adsorption. Int. J. Pharm.2000, 196, 245–249.

    Article  CAS  Google Scholar 

  120. Malmsten, M. Ellipsometry studies of the effects of surface hydrophobicity on protein adsorption. Colloids Surf. B: Biointerfaces1995, 3, 297–308.

    Article  CAS  Google Scholar 

  121. Xie, T.; Vora, A.; Mulcahey, P. J.; Nanescu, S. E.; Singh, M.; Choi, D. S.; Huang, J. K.; Liu, C. C.; Sanders, D. P.; Hahm, J. Surface assembly configurations and packing preferences of fibrinogen mediated by the periodicity and alignment control of block copolymer nanodomains. ACS Nano2016, 10, 7705–7720.

    Article  CAS  Google Scholar 

  122. Andrade, J. D.; Hlady, V.; Wei, A. P. Adsorption of complex proteins at interfaces. Pure Appl. Chem.1992, 64, 1777–1781.

    Article  CAS  Google Scholar 

  123. Rabe, M.; Verdes, D.; Seeger, S. Understanding protein adsorption phenomena at solid surfaces. Adv. Colloid Interface Sci.2011, 162, 87–106.

    Article  CAS  Google Scholar 

  124. Hung, A.; Mager, M.; Hembury, M.; Francesco, S.; Stevensc, M. M.; Yarovsky, I. Amphiphilic amino acids: A key to adsorbing proteins to nanopatterned surfaces. Chem. Sci.2013, 4, 928–937.

    Article  CAS  Google Scholar 

  125. Kersten, B.; Wanker, E. E.; Hoheisel, J. D.; Angenendt, P. Multiplex approaches in protein microarray technology. Expert Rev. Proteomics2005, 2, 499–510.

    Article  CAS  Google Scholar 

  126. Mooney, J. F.; Hunt, A. J.; McIntosh, J. R.; Liberko, C. A.; Walba, D. M.; Rogers, C. T. Patterning of functional antibodies and other proteins by photolithography of silane monolayers. Proc. Natl. Acad. Sci. USA1996, 93, 12287–12291.

    Article  CAS  Google Scholar 

  127. Mrksich, M.; Whitesides, G. M. Patterning self-assembled monolayers using microcontact printing: A new technology for biosensors. Trends Biotechnol.1995, 13, 228–235.

    Article  CAS  Google Scholar 

  128. Shim, H. W.; Lee, J. H.; Hwang, T. S.; Rhee, Y. W.; Bae, Y. M.; Choi, J. S.; Han, J.; Lee, C. S. Patterning of proteins and cells on functionalized surfaces prepared by polyelectrolyte multilayers and micromolding in capillaries. Biosens. Bioelectron.2007, 22, 3188–3195.

    Article  CAS  Google Scholar 

  129. Clemmens, J.; Hess, H.; Lipscomb, R.; Hanein, Y.; Böhringer, K. F.; Matzke, C. M.; Bachand, G. D.; Bunker, B. C.; Vogel, V. Mechanisms of microtubule guiding on microfabricated kinesin-coated surfaces: Chemical and topographic surface patterns. Langmuir2003, 19, 10967–10974.

    Article  CAS  Google Scholar 

  130. Falconnet, D.; Pasqui, D.; Park, S.; Eckert, R.; Schift, H.; Gobrecht, J.; Barbucci, R.; Textor, M. A novel approach to produce protein nanopatterns by combining nanoimprint lithography and molecular self-assembly. Nano Lett.2004, 4, 1909–1914.

    Article  CAS  Google Scholar 

  131. Garno, J. C.; Amro, N. A.; Wadu-Mesthrige, K.; Liu, G. Y. Production of periodic arrays of protein nanostructures using particle lithography. Langmuir2002, 18, 8186–8192.

    Article  CAS  Google Scholar 

  132. Jiang, J.; Li, X. M.; Mak, W. C.; Trau, D. Integrated direct DNA/ protein patterning and microfabrication by focused ion beam milling. Adv. Mater.2008, 20, 1636–1643.

    Article  CAS  Google Scholar 

  133. Lee, K. B.; Park, S. J.; Mirkin, C. A.; Smith, J. C.; Mrksich, M. Protein nanoarrays generated by dip-pen nanolithography. Science2002, 295, 1702–1705.

    Article  CAS  Google Scholar 

  134. Kenseth, J. R.; Harnisch, J. A.; Jones, V. W.; Porter, M. D. Investigation of approaches for the fabrication of protein patterns by scanning probe lithography. Langmuir2001, 17, 4105–4112.

    Article  CAS  Google Scholar 

  135. Mendoza, L. G.; McQuary, P.; Mongan, A.; Gangadharan, R.; Brignac, S.; Eggers, M. High-throughput microarray-based enzyme-linked immunosorbent assay (ELISA). Biotechniques1999, 27, 778–788.

    Article  CAS  Google Scholar 

  136. Angenendt, P.; Glökler, J.; Konthur, Z.; Lehrach, H.; Cahill, D. J. 3D protein microarrays: Performing multiplex immunoassays on a single chip. Anal. Chem.2003, 75, 4368–4372.

    Article  CAS  Google Scholar 

  137. Maury, P.; Escalante, M.; Péter, M.; Reinhoudt, D. N.; Subramaniam, V.; Huskens, J. Creating nanopatterns of his-tagged proteins on surfaces by nanoimprint lithography using specific NiNTA- histidine interactions. Small2007, 3, 1584–1592.

    Article  CAS  Google Scholar 

  138. Jeoung, E.; Duncan, B.; Wang, L. S.; Saha, K.; Subramani, C.; Wang, P. J.; Yeh, Y. C.; Kushida, T.; Engel, Y.; Barnes, M. D. et al. Fabrication of robust protein films using nanoimprint lithography. Adv. Mater.2015, 27, 6251–6255.

    Article  CAS  Google Scholar 

  139. Blinka, E.; Loeffler, K.; Hu, Y.; Gopal, A.; Hoshino, K.; Lin, K.; Liu, X. W.; Ferrari, M.; Zhang, J. X. J. Enhanced microcontact printing of proteins on nanoporous silica surface. Nanotechnology2010, 21, 415302.

    Article  CAS  Google Scholar 

  140. Brooks, S. A.; Dontha, N.; Davis, C. B.; Stuart, J. K.; O' Neill, G.; Kuhr, W. G. Segregation of micrometer-dimension biosensor elements on a variety of substrate surfaces. Anal. Chem.2000, 72, 3253–3259.

    Article  CAS  Google Scholar 

  141. Kane, R. S.; Takayama, S.; Ostuni, E.; Ingber, D. E.; Whitesides, G. M. Patterning proteins and cells using soft lithography. Biomaterials1999, 20, 2363–2376.

    Article  CAS  Google Scholar 

  142. Wadu-Mesthrige, K.; Xu, S.; Amro, N. A.; Liu, G. Y. Fabrication and imaging of nanometer-sized protein patterns. Langmuir1999, 15, 8580–8583.

    Article  CAS  Google Scholar 

  143. Taylor, Z. R.; Patel, K.; Spain, T. G.; Keay, J. C.; Jernigen, J. D.; Sanchez, E. S.; Grady, B. P.; Johnson, M. B.; Schmidtke, D. W. Fabrication of protein dot arrays via particle lithography. Langmuir2009, 25, 10932–10938.

    Article  CAS  Google Scholar 

  144. Hyun, J.; Chilkoti, A. Micropatterning biological molecules on a polymer surface using elastomeric microwells. J. Am. Chem. Soc.2001, 123, 6943–6944.

    Article  CAS  Google Scholar 

  145. Suha, K. Y.; Seong, J.; Khademhosseini, A.; Laibinis, P. E.; Langer, R. A simple soft lithographic route to fabrication of poly(ethylene glycol) microstructures for protein and cell patterning. Biomaterials2004, 25, 557–563.

    Article  CAS  Google Scholar 

  146. Lee, N. Y.; Lim, J. R.; Kim, Y. S. Selective patterning and immobilization of biomolecules within precisely-defined microreservoirs. Biosens. Bioelectron.2006, 21, 2188–2193.

    Article  CAS  Google Scholar 

  147. Chiu, D. T.; Jeon, N. L.; Huang, S.; Kane, R. S.; Wargo, C. J.; Choi, I. S.; Ingber, D. E.; Whitesides, G. M. Patterned deposition of cells and proteins onto surfaces by using three-dimensional microfluidic systems. Proc. Natl. Acad. Sci. USA2000, 97, 2408–2413.

    Article  CAS  Google Scholar 

  148. Delamarche, E.; Bernard, A.; Schmid, H.; Michel, B.; Biebuyck, H. Patterned delivery of immunoglobulins to surfaces using microfluidic networks. Science1997, 276, 779–781.

    Article  CAS  Google Scholar 

  149. Patel, N.; Sanders, G. H. W.; Shakesheff, K. M.; Cannizzaro, S. M.; Davies, M. C.; Langer, R.; Roberts, C. J.; Tendler, S. J. B.; Williams, P. M. Atomic force microscopic analysis of highly defined protein patterns formed by microfluidic networks. Langmuir1999, 15, 7252–7257.

    Article  CAS  Google Scholar 

  150. Nishioka, G. M.; Markey, A. A.; Holloway, C. K. Protein damage in drop-on-demand printers. J. Am. Chem. Soc.2004, 126, 16320–16321.

    Article  CAS  Google Scholar 

  151. Sumerel, J.; Lewis, J.; Doraiswamy, A.; Deravi, L. F.; Sewell, S. L.; Gerdon, A. E.; Wright, D. W.; Narayan, R. J. Piezoelectric ink jet processing of materials for medicaland biological applications. Biotechnol. J.2006, 1, 976–987.

    Article  CAS  Google Scholar 

  152. Lee, K. B.; Lim, J. H.; Mirkin, C. A. Protein nanostructures formed via direct-write dip-pen nanolithography. J. Am. Chem. Soc.2003, 125, 5588–5589.

    Article  CAS  Google Scholar 

  153. Salaita, K.; Lee, S. W.; Wang, X. F.; Huang, L.; Dellinger, T. M.; Liu, C.; Mirkin, C. A. Sub-100 nm, centimeter-scale, parallel dip-pen nanolithography. Small2005, 1, 940–945.

    Article  CAS  Google Scholar 

  154. Bergman, A. A.; Buijs, J.; Herbig, J.; Mathes, D. T.; Demarest, J. J.; Wilson, C. D.; Reimann, C. T.; Baragiola, R. A.; Hu, R.; Oscarsson, S. O. Nanometer-scale arrangement of human serum albumin by adsorption on defect arrays created with a finely focused ion beam. Langmuir1998, 14, 6785–6788.

    Article  CAS  Google Scholar 

  155. Liu, G. Y.; Xu, S.; Qian, Y. L. Nanofabrication of self-assembled monolayers using scanning probe lithography. Acc. Chem. Res.2000, 33, 457–466.

    Article  CAS  Google Scholar 

  156. Kolodziej, C. M.; Maynard, H. D. Electron-beam lithography for patterning biomolecules at the micron and nanometer scale. Chem. Mater.2012, 24, 774–780.

    Article  CAS  Google Scholar 

  157. Zhang, G. J.; Tanii, T.; Zako, T.; Hosaka, T.; Miyake, T.; Kanari, Y.; Funatsu, T.; Ohdomari, I. Nanoscale patterning of protein using electron beam lithography of organosilane self-assembled monolayers. Small2005, 1, 833–837.

    Article  CAS  Google Scholar 

  158. Bat, E.; Lee, J.; Lau, U. Y.; Maynard, H. D. Trehalose glycopolymer resists allow direct writing of protein patterns by electron-beam lithography. Nat. Commun.2015, 6, 6654.

    Article  CAS  Google Scholar 

  159. Phu, D.; Wray, L. S.; Warren, R. V.; Haskell, R. C.; Orwin, E. J. Effect of substrate composition and alignment on corneal cell phenotype. Tissue Eng. Part A2011, 17, 799–807.

    Article  CAS  Google Scholar 

  160. Dong, B.; Arnoult, O.; Smith, M. E.; Wnek, G. E. Electrospinning of collagen nanofiber scaffolds from benign solvents. Macromol. Rapid Commun.2009, 30, 539–542.

    Article  CAS  Google Scholar 

  161. Girton, T. S.; Dubey, N.; Tranquillo, R. T. Magnetic-induced alignment of collagen fibrils in tissue equivalents. In Tissue Engineering Methods and Protocols; Morgan, J. R.; Yarmush, M. L., Eds.; Humana Press: Totowa, NJ, USA, 1999; pp 67–73.

    Google Scholar 

  162. Torbet, J.; Malbouyres, M.; Builles, N.; Justin, V.; Roulet, M.; Damour, O.; Oldberg, Å.; Ruggiero, F.; Hulmes, D. J. S. Orthogonal scaffold of magnetically aligned collagen lamellae for corneal stroma reconstruction. Biomaterials2007, 28, 4268–4276.

    Article  CAS  Google Scholar 

  163. Cheng, X. G.; Gurkan, U. A.; Dehen, C. J.; Tate, M. P.; Hillhouse, H. W.; Simpson, G. J.; Akkus, O. An electrochemical fabrication process for the assembly of anisotropically oriented collagen bundles. Biomaterials2008, 29, 3278–3288.

    Article  CAS  Google Scholar 

  164. Vader, D.; Kabla, A.; Weitz, D.; Mahadevan, L. Strain-induced alignment in collagen gels. PLoS ONE2009, 4, e5902.

    Article  Google Scholar 

  165. Shen, L.; Garland, A.; Wang, Y.; Li, Z. C.; Bielawski, C. W.; Guo, A.; Zhu, X. Y. Two dimensional nanoarrays of individual protein molecules. Small2012, 8, 3169–3174.

    Article  CAS  Google Scholar 

  166. Samaddar, P.; Deep, A.; Kim, K. H. An engineering insight into block copolymer self-assembly: Contemporary application from biomedical research to nanotechnology. Chem. Eng. J.2018, 342, 71–89.

    Article  CAS  Google Scholar 

  167. Hrubý, M.; Filippov, S. K.; Štěpánek, P. Biomedical application of block copolymers. In Macromolecular Self-Assembly; Billon, L.; Borisov, O., Eds.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2016; pp 231–250.

    Google Scholar 

  168. Ducheyne, P.; Healy, K.; Hutmacher, D. W.; Grainger, D. W.; Kirkpatrick, C. J. Comprehensive Biomaterials; Elsevier: Waltham, MA, USA, 2011.

    Google Scholar 

  169. Arnold, M.; Cavalcanti-Adam, E. A.; Glass, R.; Blümmel, J.; Eck, W.; Kantlehner, M.; Kessler, H.; Spatz, J. P. Activation of integrin function by nanopatterned adhesive interfaces. ChemPhysChem2004, 5, 383–388.

    Article  CAS  Google Scholar 

  170. Guo, T.; Gao, J. F.; Qin, X.; Zhang, X.; Xue, H. G. A novel glucose biosensor based on hierarchically porous block copolymer film. Polymers2018, 10, 723.

    Article  CAS  Google Scholar 

  171. Li, Q.; Lau, K. H. A.; Sinner, E. K.; Kim, D. H.; Knoll, W. The effect of fluid flow on selective protein adsorption on polystyrene-block-poly(methyl methacrylate) copolymers. Langmuir2009, 25, 12144–12150.

    Article  CAS  Google Scholar 

  172. Rakhmatullina, E.; Meier, W. Solid-supported block copolymer membranes through interfacial adsorption of charged block copolymer vesicles. Langmuir2008, 24, 6254–6261.

    Article  CAS  Google Scholar 

  173. Chen, X. C.; Oh, H. J.; Yu, J. F.; Yang, J. K.; Petzetakis, N.; Patel, A. S.; Hetts, S. W.; Balsara, N. P. Block copolymer membranes for efficient capture of a chemotherapy drug. ACS Macro Lett.2016, 5, 936–941.

    Article  CAS  Google Scholar 

  174. Okano, T.; Nishiyama, S.; Shinohara, I.; Akaike, T.; Sakurai, Y.; Kataoka, K.; Tsuruta, T. Effect of hydrophilic and hydrophobic microdomains on mode of interaction between block polymer and blood platelets. J. Biomed. Mater. Res.1981, 15, 393–402.

    Article  CAS  Google Scholar 

  175. Lee, S.; Saito, K.; Lee, H. R.; Lee, M. J.; Shibasaki, Y.; Oishi, Y.; Kim, B. S. Hyperbranched double hydrophilic block copolymer micelles of poly(ethylene oxide) and polyglycerol for pH-responsive drug delivery. Biomacromolecules2012, 13, 1190–1196.

    Article  CAS  Google Scholar 

  176. Surnar, B.; Jayakannan, M. Structural engineering of biodegradable PCL block copolymer nanoassemblies for enzyme-controlled drug delivery in cancer cells. ACS Biomater. Sci. Eng.2016, 2, 1926–1941.

    Article  CAS  Google Scholar 

  177. Witt, C.; Mäder, K.; Kissel, T. The degradation, swelling and erosion properties of biodegradable implants prepared by extrusion or compression moulding of poly(lactide-co-glycolide) and ABA triblock copolymers. Biomaterials2000, 21, 931–938.

    Article  CAS  Google Scholar 

  178. Yoneda, M.; Terai, H.; Imai, Y.; Okada, T.; Nozaki, K.; Inoue, H.; Miyamoto, S.; Takaoka, K. Repair of an intercalated long bone defect with a synthetic biodegradable bone-inducing implant. Biomaterials2005, 26, 5145–5152.

    Article  CAS  Google Scholar 

  179. Dos Santos, E. A.; Farina, M.; Soares, G. A.; Anselme, K. Surface energy of hydroxyapatite and β-tricalcium phosphate ceramics driving serum protein adsorption and osteoblast adhesion. J. Mater. Sci.: Mater. Med.2008, 19, 2307–2316.

    CAS  Google Scholar 

  180. Shen, L.; Zhu, J. T. Heterogeneous surfaces to repel proteins. Adv. Colloid Interface Sci.2016, 228, 40–54.

    Article  CAS  Google Scholar 

  181. Huang, Y. W.; Gupta, V. K. A SPR and AFM study of the effect of surface heterogeneity on adsorption of proteins. J. Chem. Phys.2004, 121, 2264–2271.

    Article  CAS  Google Scholar 

  182. Sutherland, D. S.; Broberg, M.; Nygren, H.; Kasemo, B. Influence of nanoscale surface topography and chemistry on the functional behaviour of an adsorbed model macromolecule. Macromol. Biosci.2001, 1, 270–273.

    Article  CAS  Google Scholar 

  183. Hung, A.; Mwenifumbo, S.; Mager, M.; Kuna, J. J.; Stellacci, F.; Yarovsky, I.; Stevens, M. M. Ordering surfaces on the nanoscale: Implications for protein adsorption. J. Am. Chem. Soc.2011, 133, 1438–1450.

    Article  CAS  Google Scholar 

  184. Penna, M.; Ley, K.; Maclaughlin, S.; Yarovsky, I. Surface heterogeneity: A friend or foe of protein adsorption-insights from theoretical simulations. Faraday Discuss.2016, 191, 435–464.

    Article  CAS  Google Scholar 

  185. Nath, N.; Hyun, J.; Ma, H. W.; Chilkoti, A. Surface engineering strategies for control of protein and cell interactions. Surf. Sci.2004, 570, 98–110.

    Article  CAS  Google Scholar 

  186. Katz, B. Z.; Zamir, E.; Bershadsky, A.; Kam, Z.; Yamada, K. M.; Geiger, B. Physical state of the extracellular matrix regulates the structure and molecular composition of cell-matrix adhesions. Mol. Biol. Cell2000, 11, 1047–1060.

    Article  CAS  Google Scholar 

  187. Underwood, P. A.; Steele, J. G. Practical limitations of estimation of protein adsorption to polymer surfaces. J. Immunol. Methods1991, 142, 83–94.

    Article  CAS  Google Scholar 

  188. Chen, L.; Yan, C.; Zheng, Z. J. Functional polymer surfaces for controlling cell behaviors. Mater. Today2018, 21, 38–59.

    Article  CAS  Google Scholar 

  189. Sottile, J.; Hocking, D. C.; Langenbach, K. J. Fibronectin polymerization stimulates cell growth by RGD-dependent and -independent mechanisms. J. Cell Sci.2000, 113, 4287–4299.

    CAS  Google Scholar 

  190. Diener, A.; Nebe, B.; Lüthen, F.; Becker, P.; Beck, U.; Neumann, H. G.; Rychly, J. Control of focal adhesion dynamics by material surface characteristics. Biomaterials2005, 26, 383–392.

    Article  CAS  Google Scholar 

  191. Dalby, M. J.; Riehle, M. O.; Sutherland, D. S.; Agheli, H.; Curtis, A. S. G. Fibroblast response to a controlled nanoenvironment produced by colloidal lithography. J. Biomed. Mater. Res. A2004, 69, 314–322.

    Article  CAS  Google Scholar 

  192. Cavic, B. A.; Thompson, M. Adsorptions of plasma proteins and their elutabilities from a polysiloxane surface studied by an on-line acoustic wave sensor. Anal. Chem.2000, 72, 1523–1531.

    Article  CAS  Google Scholar 

  193. Lassen, B.; Malmsten, M. Competitive protein adsorption at plasma polymer surfaces. J. Colloid Interface Sci.1997, 186, 9–16.

    Article  CAS  Google Scholar 

  194. Lassen, B.; Malmsten, M. Competitive protein adsorption studied with TIRF and ellipsometry. J. Colloid Interface Sci.1996, 179, 470–477.

    Article  CAS  Google Scholar 

  195. Vilaseca, P.; Dawson, K. A.; Franzese, G. Understanding and modulating the competitive surface-adsorption of proteins through coarse-grained molecular dynamics simulations. Soft Matter2013, 9, 6978–6985.

    Article  CAS  Google Scholar 

  196. Jung, S. Y.; Lim, S. M.; Albertorio, F.; Kim, G.; Gurau, M. C.; Yang, R. D.; Holden, M. A.; Cremer, P. S. The vroman effect: A molecular level description of fibrinogen displacement. J. Am. Chem. Soc.2003, 125, 12782–12786.

    Article  CAS  Google Scholar 

  197. Vroman, L.; Adams, A. L. Identification of rapid changes at plasma–solid interfaces. J. Biomed. Mater. Res.1969, 3, 43–67.

    Article  CAS  Google Scholar 

  198. Hirsh, S. L.; McKenzie, D. R.; Nosworthy, N. J.; Denman, J. A.; Sezerman, O. U.; Bilek, M. M. M. The vroman effect: Competitive protein exchange with dynamic multilayer protein aggregates. Colloids Surf. B: Biointerfaces2013, 103, 395–404.

    Article  CAS  Google Scholar 

  199. Krishnan, A.; Siedlecki, C. A.; Vogler, E. A. Mixology of protein solutions and the vroman effect. Langmuir2004, 20, 5071–5078.

    Article  CAS  Google Scholar 

  200. Vroman, L.; Adams, A. L. Findings with the recording ellipsometer suggesting rapid exchange of specific plasma proteins at liquid/ solid interfaces. Surf. Sci.1969, 16, 438–446.

    Article  CAS  Google Scholar 

  201. Norde, W.; MacRitchie, F.; Nowicka, G.; Lyklema, J. Protein adsorption at solid-liquid interfaces: Reversibility and conformation aspects. J. Colloid Interface Sci.1986, 11 2, 447–456.

    Article  CAS  Google Scholar 

  202. Vroman, L.; Adams, A. L.; Klings, M.; Fischer, G. Fibrinogen, globulins, albumin and plasma at interfaces. In Applied Chemistry at Protein Interfaces; ACS: Washington, DC, USA, 1975; pp 255–289.

    Chapter  Google Scholar 

  203. Andrade, J. D.; Hlady, V. Plasma protein adsorption: The big twelve. Ann. N. Y. Acad. Sci.1987, 516, 158–172.

    Article  CAS  Google Scholar 

  204. Horbett, T. A.; Brash, J. L. Proteins at Interfaces II: Fundamentals and Applications; ACS: Washington, DC, USA, 1995.

    Book  Google Scholar 

  205. Xie, T.; Chattoraj, J.; Mulcahey, P. J.; Kelleher, N. P.; Del Gado, E.; Hahm, J. I. Revealing the principal attributes of protein adsorption on block copolymer surfaces with direct experimental evidence at the single protein level. Nanoscale2018, 10, 9063–9076.

    Article  CAS  Google Scholar 

  206. Song, S.; Xie, T.; Ravensbergen, K.; Hahm, J. I. Ascertaining effects of nanoscale polymeric interfaces on competitive protein adsorption at the individual protein level. Nanoscale2016, 8, 3496–3509.

    Article  CAS  Google Scholar 

  207. Cha, T. W.; Guo, A.; Zhu, X. Y. Enzymatic activity on a chip: The critical role of protein orientation. Proteomics2005, 5, 416–419.

    Article  CAS  Google Scholar 

  208. Wan, J. D.; Thomas, M. S.; Guthrie, S.; Vullev, V. I. Surface-bound proteins with preserved functionality. Anal. Biomed. Eng.2009, 37, 1190–1205.

    Article  Google Scholar 

  209. Vroman, L. Effect of adsorbed proteins on the wettability of hydrophilic and hydrophobic solids. Nature1962, 196, 476–477.

    Article  CAS  Google Scholar 

  210. Makarucha, A. J.; Todorova, N.; Yarovsky, I. Nanomaterials in biological environment: A review of computer modelling studies. Eur. Biophys. J.2011, 40, 103–115.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

D. H. C., T. X, and J. T. acknowledge financial support on this work by the National Science Foundation (NSF Award Nos. CHE1404658 and CHE1903857) from the Macromolecular, Supramolecular and Nanochemistry Program under the Division of Chemistry. J. H. acknowledges the NSF support from the Independent Research/Development (IR/D) program while serving at the National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jong-in Hahm.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cho, D.H., Xie, T., Truong, J. et al. Recent advances towards single biomolecule level understanding of protein adsorption phenomena unique to nanoscale polymer surfaces with chemical variations. Nano Res. 13, 1295–1317 (2020). https://doi.org/10.1007/s12274-020-2735-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-2735-7

Keywords

Navigation