Skip to main content
Log in

(Metal yolk)/(porous ceria shell) nanostructures for high-performance plasmonic photocatalysis under visible light

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

We describe a route to the preparation of (metal yolk)/(porous ceria shell) nanostructures through the heterogeneous growth of ceria on porous metal nanoparticles followed by the calcination-induced shrinkage of the nanoparticles. The approach allows for the control of the ceria shell thickness, the metal yolk composition and size, which is difficult to realize through common templating approaches. The yolk/shell nanostructures with monometallic Pt and bimetallic PtAg yolks featuring plasmon-induced broadband light absorption in the visible region are rationally designed and constructed. The superior photocatalytic activities of the obtained nanostructures are demonstrated by the selective oxidation of benzyl alcohol under visible light. The excellent activities are ascribed to the synergistic effects of the metal yolk and the ceria shell on the light absorption, electron-hole separation and efficient mass transfer. Our synthesis of the (metal yolk)/(porous ceria shell) nanostructures points out a way to the creation of sophisticated heteronanostructures for high-performance photocatalysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Linic, S.; Christopher, P.; Ingram, D. B. Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. Nat. Mater.2011, 10, 911–921.

    Article  CAS  Google Scholar 

  2. Linic, S.; Aslam, U.; Boerigter, C.; Morabito, M. Photochemical transformations on plasmonic metal nanoparticles. Nat. Mater.2015, 14, 567–576.

    Article  CAS  Google Scholar 

  3. Zhou, L. N.; Swearer, D. F.; Zhang, C.; Robatjazi, H.; Zhao, H. Q.; Henderson, L.; Dong, L. L.; Christopher, P.; Carter, E. A.; Nordlander, P. et al. Quantifying hot carrier and thermal contributions in plasmonic photocatalysis. Science2018, 362, 69–72.

    Article  CAS  Google Scholar 

  4. Jiang, R. B.; Li, B. X.; Fang, C. H.; Wang, J. F. Metal/semiconductor hybrid nanostructures for plasmon-enhanced applications. Adv. Mater.2014, 26, 5274–5309.

    Article  CAS  Google Scholar 

  5. Clavero, C. Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices. Nat. Photonics2014, 8, 95–103.

    Article  CAS  Google Scholar 

  6. Zhang, Y. C.; He, S.; Guo, W. X.; Hu, Y.; Huang, J. W.; Mulcahy, J. R.; Wei, W. D. Surface-plasmon-driven hot electron photochemistry. Chem. Rev.2018, 118, 2927–2954.

    Article  CAS  Google Scholar 

  7. Li, B. X.; Gu, T.; Ming, T.; Wang, J. X.; Wang, P.; Wang, J. F.; Yu, J. C. (Gold core)@(ceria shell) nanostructures for plasmon-enhanced catalytic reactions under visible light. ACS Nano2014, 8, 8152–8162.

    Article  CAS  Google Scholar 

  8. Sakamoto, H.; Ohara, T.; Yasumoto, N.; Shiraishi, Y.; Ichikawa, S.; Tanaka, S.; Hirai, T. Hot-electron-induced highly efficient O2 activation by Pt nanoparticles supported on Ta2O5 driven by visible light. J. Am. Chem. Soc.2015, 137, 9324–9332.

    Article  CAS  Google Scholar 

  9. Wu, B. H.; Liu, D. Y.; Mubeen, S.; Chuong, T. T.; Moskovits, M.; Stucky, G. D. Anisotropic growth of TiO2 onto gold nanorods for plasmon-enhanced hydrogen production from water reduction. J. Am. Chem. Soc.2016, 138, 1114–1117.

    Article  CAS  Google Scholar 

  10. Yang, J. H.; Guo, Y. Z.; Jiang, R. B.; Qin, F.; Zhang, H.; Lu, W. Z.; Wang, J. F.; Yu, J. C. M. High-efficiency “working-in-tandem” nitrogen photofixation achieved by assembling plasmonic gold nanocrystals on ultrathin titania nanosheets. J. Am. Chem. Soc.2018, 140, 8497–8508.

    Article  CAS  Google Scholar 

  11. Collado, L.; Reynal, A.; Fresno, F.; Barawi, M.; Escudero, C.; Perez-Dieste, V.; Coronado, J. M.; Serrano, D. P.; Durrant, J. R.; de la Peña O’Shea, V. A. Unravelling the effect of charge dynamics at the plasmonic metal/semiconductor interface for CO2 photoreduction. Nat. Commun.2018, 9, 4986.

    Article  CAS  Google Scholar 

  12. Nguyen, C. C.; Vu, N. N.; Do, T. O. Recent advances in the development of sunlight-driven hollow structure photocatalysts and their applications. J. Mater. Chem. A2015, 3, 18345–18359.

    Article  CAS  Google Scholar 

  13. Li, A.; Zhu, W. J.; Li, C. C.; Wang, T.; Gong, J. L. Rational design of yolk-shell nanostructures for photocatalysis. Chem. Soc. Rev.2019, 48, 1874–1907.

    Article  CAS  Google Scholar 

  14. Chen, C.; Fang, X. L.; Wu, B. H.; Huang, L. J.; Zheng, N. F. A multi-yolk-shell structured nanocatalyst containing sub-10 nm Pd nanoparticles in porous CeO2. ChemCatChem2012, 4, 1578–1586.

    Article  CAS  Google Scholar 

  15. Tu, W. G.; Zhou, Y.; Li, H. J.; Li, P.; Zou, Z. G. Au@TiO2 yolk-shell hollow spheres for plasmon-induced photocatalytic reduction of CO2 to solar fuel via a local electromagnetic field. Nanoscale2015, 7, 14232–14236.

    Article  CAS  Google Scholar 

  16. Yue, Q.; Li, J. L.; Zhang, Y.; Cheng, X. W.; Chen, X.; Pan, P. P.; Su, J. C.; Elzatahry, A. A.; Alghamdi, A.; Deng, Y. H. et al. Plasmolysis-inspired nanoengineering of functional yolk-shell microspheres with magnetic core and mesoporous silica shell. J. Am. Chem. Soc.2017, 139, 15486–15493.

    Article  CAS  Google Scholar 

  17. Feng, J. W.; Liu, J.; Cheng, X. Y.; Liu, J. J.; Xu, M.; Zhang, J. T. Hydrothermal cation exchange enabled gradual evolution of Au@ZnS-AgAuS yolk-shell nanocrystals and their visible light photocatalytic applications. Adv. Sci. 2018, 5, 1700376.

    Article  CAS  Google Scholar 

  18. Li, A.; Zhang, P.; Chang, X. X.; Cai, W. T.; Wang, T.; Gong, J. L. Gold nanorod@TiO2 yolk-shell nanostructures for visible-light-driven photocatalytic oxidation of benzyl alcohol. Small2015, 11, 1892–1899.

    Article  CAS  Google Scholar 

  19. Wu, X. J.; Xu, D. S. Formation of yolk/SiO2 shell structures using surfactant mixtures as template. J. Am. Chem. Soc.2009, 131, 2774–2775.

    Article  CAS  Google Scholar 

  20. Purbia, R.; Paria, S. Yolk/shell nanoparticles: Classifications, synthesis, properties, and applications. Nanoscale2015, 7, 19789–19873.

    Article  CAS  Google Scholar 

  21. Bigall, N. C.; Härtling, T.; Klose, M.; Simon, P.; Eng, L. M.; Eychmüller, A. Monodisperse platinum nanospheres with adjustable diameters from 10 to 100 nm: Synthesis and distinct optical properties. Nano Lett.2008, 8, 4588–4592.

    Article  CAS  Google Scholar 

  22. Langhammer, C.; Yuan, Z.; Zorić, I.; Kasemo, B. Plasmonic properties of supported Pt and Pd nanostructures. Nano Lett.2006, 6, 833–838.

    Article  CAS  Google Scholar 

  23. Zorić, I.; Zäch, M.; Kasemo, B.; Langhammer, C. Gold, platinum, and aluminum nanodisk plasmons: Material independence, subradiance, and damping mechanisms. ACS Nano2011, 5, 2535–2546.

    Article  CAS  Google Scholar 

  24. Han, C.; Li, S. H.; Tang, Z. R.; Xu, Y. J. Tunable plasmonic core-shell heterostructure design for broadband light driven catalysis. Chem. Sci.2018, 9, 8914–8922.

    Article  CAS  Google Scholar 

  25. Zhang, N.; Han, C.; Xu, Y. J.; Foley IV, J. J.; Zhang, D. T.; Codrington, J.; Gray, S. K.; Sun, Y. G. Near-field dielectric scattering promotes optical absorption by platinum nanoparticles. Nat. Photonics2016, 10, 473–482.

    Article  CAS  Google Scholar 

  26. Chen, J. Y.; Wiley, B.; McLellan, J.; Xiong, Y. J.; Li, Z. Y.; Xia, Y. N. Optical properties of Pd-Ag and Pt-Ag nanoboxes synthesized via galvanic replacement reactions. Nano Lett.2005, 5, 2058–2062.

    Article  CAS  Google Scholar 

  27. Aslam, U.; Chavez, S.; Linic, S. Controlling energy flow in multimetallic nanostructures for plasmonic catalysis. Nat. Nanotechnol.2017, 12, 1000–1005.

    Article  CAS  Google Scholar 

  28. Jia, H. L.; Du, A. X.; Zhang, H.; Yang, J. H.; Jiang, R. B.; Wang, J. F.; Zhang, C. Y. Site-selective growth of crystalline ceria with oxygen vacancies on gold nanocrystals for near-infrared nitrogen photofixation. J. Am. Chem. Soc.2019, 141, 5083–5086.

    Article  CAS  Google Scholar 

  29. Jia, H. L.; Zhu, X. M.; Jiang, R. B.; Wang, J. F. Aerosol-sprayed gold/ceria photocatalyst with superior plasmonic hot electron-enabled visible-light activity. ACS Appl. Mater. Interfaces2017, 9, 2560–2571.

    Article  CAS  Google Scholar 

  30. Mao, M. Y.; Lv, H. Q.; Li, Y. Z.; Yang, Y.; Zeng, M.; Li, N.; Zhao, X. J. Metal support interaction in Pt nanoparticles partially confined in the mesopores of microsized mesoporous CeO2 for highly efficient purification of volatile organic compounds. ACS Catal.2016, 6, 418–427.

    Article  CAS  Google Scholar 

  31. Gao, M. M.; Ng, S. W. L.; Chen, L. W.; Hong, M. H.; Ho, G. W. Self-regulating reversible photocatalytic-driven chromism of a cavity enhanced optical field TiO2/CuO nanocomposite. J. Mater. Chem. A2017, 5, 10909–10916.

    Article  CAS  Google Scholar 

  32. Lee, S. U.; Jung, H.; Wi, D. H.; Hong, J. W.; Sung, J.; Choi, S. I.; Han, S. W. Metal-semiconductor yolk-shell heteronanostructures for plasmon-enhanced photocatalytic hydrogen evolution. J. Mater. Chem. A2018, 6, 4068–4078.

    Article  CAS  Google Scholar 

  33. Li, G. L.; Kang, E. T.; Neoh, K. G.; Yang, X. L. Concentric hollow nanospheres of mesoporous silica shell-titania core from combined inorganic and polymer syntheses. Langmuir2009, 25, 4361–4364.

    Article  CAS  Google Scholar 

  34. Kim, Y.; Torres, D. D.; Jain, P. K. Activation energies of plasmonic catalysts. Nano Lett.2016, 16, 3399–3407.

    Article  CAS  Google Scholar 

  35. Kim, Y.; Smith, J. G.; Jain, P. K. Harvesting multiple electron-hole pairs generated through plasmonic excitation of Au nanoparticles. Nat. Chem.2018, 10, 763–769.

    Article  CAS  Google Scholar 

  36. Iwasaki, M.; Iglesia, E. Mechanistic assessments of NO oxidation turnover rates and active site densities on WO3-promoted CeO2 catalysts. J. Catal.2016, 342, 84–97.

    Article  CAS  Google Scholar 

  37. Li, B. X.; Zhang, B. S.; Nie, S. B.; Shao, L. Z.; Hu, L. Y. Optimization of plasmon-induced photocatalysis in electrospun Au/CeO2 hybrid nanofibers for selective oxidation of benzyl alcohol. J. Catal.2017, 348, 256–264.

    Article  CAS  Google Scholar 

  38. Zhang, N.; Fu, X. Z.; Xu, Y. J. A facile and green approach to synthesize Pt@CeO2 nanocomposite with tunable core-shell and yolk-shell structure and its application as a visible light photocatalyst. J. Mater. Chem.2011, 21, 8152–8158.

    Article  CAS  Google Scholar 

  39. Chen, B. B.; Li, X. M.; Zheng, R. J.; Chen, R. P.; Sun, X. Bimetallic (Au-Cu core)@(ceria shell) nanotubes for photocatalytic oxidation of benzyl alcohol: Improved reactivity by Cu. J. Mater. Chem. A2017, 5, 13382–13391.

    Article  CAS  Google Scholar 

  40. Song, S. Y.; Liu, X. C.; Li, J. Q.; Pan, J.; Wang, F.; Xing, Y.; Wang, X.; Liu, X. G.; Zhang, H. J. Confining the nucleation of Pt to in situ form (Pt-enriched cage)@CeO2 core@shell nanostructure as excellent catalysts for hydrogenation reactions. Adv. Mater.2017, 29, 1700495.

    Article  CAS  Google Scholar 

  41. Cui, Z. Q.; Wang, W. K.; Zhao, C. J.; Chen, C.; Han, M. M.; Wang, G. Z.; Zhang, Y. X.; Zhang, H. M.; Zhao, H. J. Spontaneous redox approach to the self-assembly synthesis of Au/CeO2 plasmonic photocatalysts with rich oxygen vacancies for selective photocatalytic conversion of alcohols. ACS Appl. Mater. Interfaces2018, 10, 31394–31403.

    Article  CAS  Google Scholar 

  42. Zhang, N.; Liu, S. Q.; Fu, X. Z.; Xu, Y. J. A simple strategy for fabrication of “plum-pudding” type Pd@CeO2 semiconductor nanocomposite as a visible-light-driven photocatalyst for selective oxidation. J. Phys. Chem. C2011, 115, 22901–22909.

    Article  CAS  Google Scholar 

  43. Wang, L.; Yamauchi, Y. Synthesis of mesoporous Pt nanoparticles with uniform particle size from aqueous surfactant solutions toward highly active electrocatalysts. Chem. -Eur. J.2011, 17, 8810–8815.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 61605050), the Natural Science Foundation of Fujian Province of China (Nos. 2017J01085 and 2019J06019), the Promotion Program for Young and Middle-aged Teacher in Science and Technology Research of Huaqiao University (No. ZQN-PY416), the Scientific Research Funds of Huaqiao University (No. 16135102), and the Program for Innovative Research Team in Science and Technology in Fujian Province University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nina Jiang or Jianfang Wang.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, N., Li, D., Liang, L. et al. (Metal yolk)/(porous ceria shell) nanostructures for high-performance plasmonic photocatalysis under visible light. Nano Res. 13, 1354–1362 (2020). https://doi.org/10.1007/s12274-019-2599-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-019-2599-x

Keywords

Navigation