Skip to main content
Log in

Highly dispersed Co-Mo sulfide nanoparticles on reduced graphene oxide for lithium and sodium ion storage

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

A novel hybrid, highly dispersed spinel Co-Mo sulfide nanoparticles on reduced graphene oxide (Co3S4/CoMo2S4@rGO), is reported as anode for lithium and sodium ion storage. The hybrid is synthesized by one-step hydrothermal method but exhibits excellent lithium and sodium storage performances. The as-synthesized Co3S4/CoMo2S4@rGO presents reversible capacity of 595.4 mA·h·g−1 and 408.8 mA·h·g−1 after 100 cycles at a current density of 0.2 A·g−1 for lithium and sodium ion storages, respectively. Such superior performances are attributed to the unique composition and structure of Co3S4/CoMo2S4@rGO. The rGO provides a good electronically conductive network and ensures the formation of spinel Co3S4/CoMo2S4 nanoparticles, the Co3S4/CoMo2S4 nanoparticles provide large reaction surface for lithium and sodium intercalation/deintercalation, and the spinel structure allows fast lithium and sodium ion diffusion in three dimensions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang, H. R.; Huang, Y. S.; Huang, C. F.; Wang, X. S.; Wang, K.; Chen, H. B.; Liu, S. B.; Wu, Y. P.; Xu, K.; Li, W. S. Reclaiming graphite from spent lithium ion batteries ecologically and economically. Electrochim. Acta2019, 313, 423–431.

    CAS  Google Scholar 

  2. Lin, Z. H.; Li, J. H.; Huang, Q. M.; Xu, K.; Fan, W. Z.; Yu, L.; Xia, Q. B.; Li, W. S. Insights into the Interfacial Instability between carbon-coated SiO anode and electrolyte in lithium-ion batteries. J. Phys. Chem. C2019, 123, 12902–12909.

    CAS  Google Scholar 

  3. Palomares, V.; Serras, P.; Villaluenga, I.; Hueso, K. B.; Carretero-González, J.; Rojo, T. Na-ion batteries, recent advances and present challenges to become low cost energy storage systems. Energy Environ. Sci.2012, 5, 5884–5901.

    CAS  Google Scholar 

  4. Wu, S. F.; Wang, W. X.; Li, M. C.; Cao, L. J.; Lyu, F.; Yang, M. Y.; Wang, Z. Y.; Shi, Y.; Nan, B.; Yu, S. C. et al. Highly durable organic electrode for sodium-ion batteries via a stabilized α-C radical intermediate. Nat. Commun.2016, 7, 13318.

    CAS  Google Scholar 

  5. Yabuuchi, N.; Kubota, K.; Dahbi, M.; Komaba, S. Research development on sodium-ion batteries. Chem. Rev.2014, 114, 11636–11682.

    CAS  Google Scholar 

  6. Wu, C.; Zhu, Y.; Guan, C.; Jia, C. K.; Qin, W.; Wang, X. Y.; Zhang, K. L. Mesoporous aluminium manganese cobalt oxide with pentahedron structures for energy storage devices. J. Mater. Chem. A2019, 7, 18417–18427.

    CAS  Google Scholar 

  7. Sun, W. Y.; Li, P.; Liu, X.; Shi, J. J.; Sun, H. M.; Tao, Z. L.; Li, F. J.; Chen, J. Size-controlled MoS2 nanodots supported on reduced graphene oxide for hydrogen evolution reaction and sodium-ion batteries. Nano Res.2017, 10, 2210–2222.

    CAS  Google Scholar 

  8. Wang, L. L.; Gu, X. L.; Zhao, L. Y.; Wang, B.; Jia, C. K.; Xu, J. L.; Zhao, Y. F.; Zhang, J. J. ZnO@TiO2 heterostructure arrays/carbon cloth by charge redistribution enhances performance in flexible anode for Li ion batteries. Electrochim. Acta2019, 295, 107–112.

    CAS  Google Scholar 

  9. Wang, X. S.; Pan, Z. H.; Wu, Y.; Ding, X. Y.; Hong, X. J.; Xu, G. G.; Liu, M. N.; Zhang, Y. G.; Li, W. S. Infiltrating lithium into carbon cloth decorated with zinc oxide arrays for dendrite-free lithium metal anode. Nano Res.2019, 12, 525–529.

    CAS  Google Scholar 

  10. Wang, Y.; Wang, X. Y.; Li, X. L.; Yu, R. Z.; Chen, M. F.; Tang, K.; Zhang, X. H. The novel P3-type layered Na0.65Mn0.75Ni0.25O2 oxides doped by non-metallic elements for high performance sodium-ion batteries. Chem. Eng. J.2019, 360, 139–147.

    CAS  Google Scholar 

  11. Yan, Z. C.; Tang, L.; Huang, Y. Y.; Hua, W. B.; Wang, Y.; Liu, R.; Gu, Q. F.; Indris, S.; Chou, S. L.; Huang, Y. H. et al. A hydrostable cathode material based on the layered P2@P3 composite that shows redox behavior for copper in high-rate and long-cycling sodium-ion batteries. Angew. Chem., Int. Ed.2019, 58, 1412–1416.

    CAS  Google Scholar 

  12. Chen, J.; Li, L. J.; Wu, L.; Yao, Q.; Yang, H. P.; Liu, Z. S.; Xia, L. F.; Chen, Z. Y.; Duan, J. F.; Zhong, S. K. Enhanced cycle stability of Na0.9Ni0.45Mn0.55O2 through tailoring O3/P2 hybrid structures for sodium-ion batteries. J. Power Sources2018, 406, 110–117.

    CAS  Google Scholar 

  13. Zhang, K.; Park, M.; Zhang, J.; Lee, G. H.; Shin, J.; Kang, Y. M. Cobalt phosphide nanoparticles embedded in nitrogen-doped carbon nanosheets: Promising anode material with high rate capability and long cycle life for sodium-ion batteries. Nano Res.2017, 10, 4337–4350.

    CAS  Google Scholar 

  14. Ge, X. F.; Liu, S. H.; Qiao, M.; Du, Y. C.; Li, Y. F.; Bao, J. C.; Zhou, X. S. Enabling superior electrochemical properties for highly efficient potassium storage by impregnating ultrafine sb nanocrystals within nanochannel-containing carbon nanofibers. Angew. Chem., Int. Ed.2019, 58, 14578–14583.

    CAS  Google Scholar 

  15. Slater, M. D.; Kim, D.; Lee, E.; Johnson, C. S. Sodium-ion batteries. Adv. Funct. Mater.2013, 23, 947–958.

    CAS  Google Scholar 

  16. Chen, X. Q.; Zhu, Y. M.; Li, B.; Hong, P. B.; Luo, X. Y.; Zhong, X. X.; Xing, L. D.; Li, W. S. Porous manganese oxide nanocubes enforced by solid electrolyte interphase as anode of high energy density battery. Electrochim. Acta2017, 224, 251–259.

    CAS  Google Scholar 

  17. Li, J. B.; Yan, D.; Lu, T.; Yao, Y. F.; Pan, L. K. An advanced CoSe embedded within porous carbon polyhedra hybrid for high performance lithium-ion and sodium-ion batteries. Chem. Eng. J.2017, 325, 14–24.

    CAS  Google Scholar 

  18. Wang, Y.; Kong, D. Z.; Shi, W. H.; Liu, B.; Sim, G. J.; Ge, Q.; Yang, H. Y. Ice templated free-standing hierarchically WS2/CNT-rGO aerogel for high-performance rechargeable lithium and sodium ion batteries. Adv. Energy Mater.2016, 6, 1601057.

    Google Scholar 

  19. Wu, C.; Zhu, Y.; Ding, M.; Jia, C. K.; Zhang, K. L. Fabrication of plate-like MnO2 with excellent cycle stability for supercapacitor electrodes. Electrochim. Acta2018, 291, 249–255.

    CAS  Google Scholar 

  20. Zhao, Q. L.; Gaddam, R. R.; Yang, D. F.; Strounina, E.; Whittaker, A. K.; Zhao, X. S. Pyromellitic dianhydride-based polyimide anodes for sodium-ion batteries. Electrochim. Acta2018, 265, 702–708.

    CAS  Google Scholar 

  21. Li, D. H.; Yang, D. J.; Yang, X. F.; Wang, Y.; Guo, Z. Q.; Xia, Y. Z.; Sun, S. L.; Guo, S. J. Double-helix structure in carrageenan-metal hydrogels: A general approach to porous metal sulfides/carbon aerogels with excellent sodium-ion storage. Angew. Chem., Int. Ed.2016, 55, 15925–15928.

    CAS  Google Scholar 

  22. Cai, X.; Lin, H. B.; Zeng, X. W.; Chen, X. Q.; Xia, P.; Luo, X. Y.; Zhong, X. X.; Li, X. P.; Li, W. S. Facile synthesis of porous iron oxide rods coated with carbon as anode of high energy density lithium ion battery. Electrochim. Acta2016, 191, 767–775.

    CAS  Google Scholar 

  23. Zhu, J. X.; Tang, C. J.; Zhuang, Z. C.; Shi, C. W.; Li, N. R.; Zhou, L.; Mai, L. Q. Porous and low-crystalline manganese silicate hollow spheres wired by graphene oxide for high-performance lithium and sodium storage. ACS Appl. Mater. Interfaces2017, 9, 24584–24590.

    CAS  Google Scholar 

  24. Li, X. M.; Feng, Z. X.; Zai, J. T.; Ma, Z. F.; Qian, X. F. Incorporation of Co into MoS2/graphene nanocomposites: One effective way to enhance the cycling stability of Li/Na storage. J. Power Sources2018, 373, 103–109.

    CAS  Google Scholar 

  25. Cherian, C. T.; Reddy, M. V.; Haur, S. C.; Chowdari, B. V. R. Interconnected network of CoMoO4 submicrometer particles as high capacity anode material for lithium ion batteries. ACS Appl. Mater. Interfaces2013, 5, 918–923.

    CAS  Google Scholar 

  26. Li, M.; Xu, S. H.; Cherry, C.; Zhu, Y. P.; Wu, D. J.; Zhang, C.; Zhang, X. L.; Huang, R.; Qi, R. J.; Wang, L. W. et al. Hierarchical 3-dimensional CoMoO4 nanoflakes on a macroporous electrically conductive network with superior electrochemical performance. J. Mater. Chem. A2015, 3, 13776–13785.

    CAS  Google Scholar 

  27. Yu, H.; Guan, C.; Rui, X. H.; Ouyang, B.; Yadian, B. L.; Huang, Y. Z.; Zhang, H.; Hoster, H. E.; Fan, H. J.; Yan, Q. Y. Hierarchically porous three-dimensional electrodes of CoMoO4 and ZnCo2O4 and their high anode performance for lithium ion batteries. Nanoscale2014, 6, 10556–10561.

    Google Scholar 

  28. Yao, J. Y.; Gong, Y. J.; Yang, S. B.; Xiao, P.; Zhang, Y. H.; Keyshar, K.; Ye, G. L.; Ozden, S.; Vajtai, R.; Ajayan, P. M. CoMoO4 nanoparticles anchored on reduced graphene oxide nanocomposites as anodes for long-life lithium-ion batteries. ACS Appl. Mater. Interfaces2014, 6, 20414–20422.

    CAS  Google Scholar 

  29. Zhang, L. H.; Zhu, S. Q.; Cao, H.; Hou, L. R.; Yuan, C. Z. Hierarchical porous ZnMn2O4 hollow nanotubes with enhanced lithium storage toward lithium-ion batteries. Chemistry2015, 21, 10771–10777.

    CAS  Google Scholar 

  30. Chen, X. Q.; Zhang, Y. M.; Lin, H. B.; Xia, P.; Cai, X.; Li, X. G.; Li, X. P.; Li, W. S. Porous ZnMn2O4 nanospheres: Facile synthesis through microemulsion method and excellent performance as anode of lithium ion battery. J. Power Sources2016, 312, 137–145.

    CAS  Google Scholar 

  31. Zhou, L.; Zhao, D. Y.; Lou, X. W. Double-shelled CoMn2O4 hollow microcubes as high-capacity anodes for lithium-ion batteries. Adv. Mater.2012, 24, 745–748.

    CAS  Google Scholar 

  32. Yu, L.; Guan, B. Y.; Xiao, W.; Lou, X. W. D. Formation of yolk-shelled Ni-Co mixed oxide nanoprisms with enhanced electrochemical performance for hybrid supercapacitors and lithium ion batteries. Adv. Energy Mater.2015, 5, 1500981.

    Google Scholar 

  33. Yang, D. F.; Zhao, Q. L.; Huang, L. Q.; Xu, B. H.; Kumar, N. A.; Zhao, X. S. Encapsulation of NiCo2O4 in nitrogen-doped reduced graphene oxide for sodium ion capacitors. J. Mater. Chem. A2018, 6, 14146–14154.

    CAS  Google Scholar 

  34. Yuan, C. Z.; Li, J. Y.; Hou, L. R.; Zhang, X. G.; Shen, L. F.; Lou, X. W. Ultrathin mesoporous NiCo2O4 nanosheets supported on Ni foam as advanced electrodes for supercapacitors. Adv. Funct. Mater.2012, 22, 4592–4597.

    CAS  Google Scholar 

  35. Saravanakumar, B.; Wang, X. S.; Zhang, W. G.; Xing, L. D.; Li, W. S. Holey two dimensional manganese cobalt oxide nanosheets as a high-performance electrode for supercapattery. Chem. Eng. J.2019, 373, 547–555.

    CAS  Google Scholar 

  36. Wang, X. J.; Cao, K. Z.; Wang, Y. J.; Jiao, L. F. Controllable N-doped CuCo2O4@C film as a self-supported anode for ultrastable sodium-ion batteries. Small2017, 13, 1700873.

    Google Scholar 

  37. Zhu, C. B.; Mu, X. K.; van Aken, P. A.; Yu, Y.; Maier, J. Single-layered ultrasmall nanoplates of MoS2 embedded in carbon nanofibers with excellent electrochemical performance for lithium and sodium storage. Angew. Chem., Int. Ed.2014, 53, 2152–2156.

    CAS  Google Scholar 

  38. Chang, K.; Chen, W. X. L-cysteine-assisted synthesis of layered MoS2/graphene composites with excellent electrochemical performances for lithium ion batteries. Acs Nano2011, 5, 4720–4728.

    CAS  Google Scholar 

  39. Tu, F. Z.; Han, Y.; Du, Y. C.; Ge, X. F.; Weng, W. S.; Zhou, X. S.; Bao, J. C. Hierarchical nanospheres constructed by ultrathin MoS2 nanosheets braced on nitrogen-doped carbon polyhedra for efficient lithium and sodium storage. ACS Appl. Mater. Interfaces2019, 11, 2112–2119.

    CAS  Google Scholar 

  40. Wang, Y.; Kong, D. Z.; Huang, S. Z.; Shi, Y. M.; Ding, M.; von Lim, Y.; Xu, T. T.; Chen, F. M.; Li, X. J.; Yang, H. Y. 3D carbon foam-supported WS2 nanosheets for cable-shaped flexible sodium ion batteries. J. Mater. Chem. A2018, 6, 10813–10824.

    CAS  Google Scholar 

  41. Li, X. M.; Zai, J. T.; Xiang, S. J.; Liu, Y. Y.; He, X. B.; Xu, Z. Y.; Wang, K. X.; Ma, Z. F.; Qian, X. F. Regeneration of metal sulfides in the delithiation process: The key to cyclic stability. Adv. Energy Mater.2016, 6, 1601056.

    Google Scholar 

  42. Tan, Y. B.; Liang, M.; Lou, P. L.; Cui, Z. H.; Guo, X. X.; Sun, W. W.; Yu, X. B. In situ fabrication of CoS and NiS nanomaterials anchored on reduced graphene oxide for reversible lithium storage. ACS Appl. Mater. Interfaces2016, 8, 14488–14493.

    CAS  Google Scholar 

  43. Sun, D.; Ye, D. L.; Liu, P.; Tang, Y. G.; Guo, J.; Wang, L. Z.; Wang, H. Y. MoS2/graphene nanosheets from commercial bulky MoS2 and graphite as anode materials for high rate sodium-ion batteries. Adv. Energy Mater.2018, 8, 1702383.

    Google Scholar 

  44. Xiong, X. H.; Yang, C. H.; Wang, G. H.; Lin, Y. W.; Ou, X.; Wang, J. H.; Zhao, B.; Liu, M. L.; Lin, Z.; Huang, K. SnS nanoparticles electrostatically anchored on three-dimensional N-doped graphene as an active and durable anode for sodium-ion batteries. Energy Environ. Sci.2017, 10, 1757–1763.

    CAS  Google Scholar 

  45. Li, X. M.; Qian, T. Y.; Zai, J. T.; He, K.; Feng, Z. X.; Qian, X. F. Co stabilized metallic 1Td MoS2 monolayers: Bottom-up synthesis and enhanced capacitance with ultra-long cycling stability. Mater. Today Energy2018, 7, 10–17.

    CAS  Google Scholar 

  46. Zhu, Y. Y.; Ramasse, Q. M.; Brorson, M.; Moses, P. G.; Hansen, L. P.; Kisielowski, C. F.; Helveg, S. Visualizing the stoichiometry of industrial-style Co-Mo-S catalysts with single-atom sensitivity. Angew. Chem., Int. Ed.2014, 53, 10723–10727.

    CAS  Google Scholar 

  47. Zhu, H.; Zhang, J. F.; Yanzhang, R. P.; Du, M. L.; Wang, Q. F.; Gao, G. H.; Wu, J. D.; Wu, G. M.; Zhang, M.; Liu, B. et al. When cubic cobalt sulfide meets layered molybdenum disulfide: A core-shell system toward synergetic electrocatalytic water splitting. Adv. Mater.2015, 27, 4752–4759.

    CAS  Google Scholar 

  48. Yang, X. J.; Sun, H. M.; Zan, P.; Zhao, L. J.; Lian, J. S. Growth of vertically aligned Co3S4/CoMo2S4 ultrathin nanosheets on reduced graphene oxide as a high-performance supercapacitor electrode. J. Mater. Chem. A2016, 4, 18857–18867.

    CAS  Google Scholar 

  49. Liao, Y. Q.; Huang, Y. L.; Shu, D.; Zhong, Y. Y.; Hao, J. N.; He, C.; Zhong, J.; Song, X. N. Three-dimensional nitrogen-doped graphene hydrogels prepared via hydrothermal synthesis as high-performance supercapacitor materials. Electrochim. Acta2016, 194, 136–142.

    CAS  Google Scholar 

  50. Yang, J.; Xuan, H. C.; Yang, G. H.; Liang, T.; Han, X. K.; Gao, J. H.; Xu, Y. K.; Xie, Z. G.; Han, P. D.; Wang, D. H. et al. Formation of a flower-like Co-Mo-S on reduced graphene oxide composite on nickel foam with enhanced electrochemical capacitive properties. ChemElectroChem2018, 5, 3748–3756.

    CAS  Google Scholar 

  51. Chen, T.; Zhang, Z. W.; Cheng, B. R.; Chen, R. P.; Hu, Y.; Ma, L. B.; Zhu, G. Y.; Liu, J.; Jin, Z. Self-templated formation of interlaced carbon nanotubes threaded hollow Co3S4 nanoboxes for high-rate and heat-resistant lithium-sulfur batteries. J. Am. Chem. Soc.2017, 139, 12710–12715.

    CAS  Google Scholar 

  52. Wu, Y. Z.; Meng, J. S.; Li, Q.; Niu, C. J.; Wang, X. P.; Yang, W.; Li, W.; Mai, L. Q. Interface-modulated fabrication of hierarchical yolk-shell Co3O4/C dodecahedrons as stable anodes for lithium and sodium storage. Nano Res.2017, 10, 2364–2376.

    CAS  Google Scholar 

  53. Li, Z. Q.; Zhang, L. Y.; Ge, X. L.; Li, C. X.; Dong, S. H.; Wang, C. X.; Yin, L. W. Core-shell structured CoP/FeP porous microcubes interconnected by reduced graphene oxide as high performance anodes for sodium ion batteries. Nano Energy2017, 32, 494–502.

    CAS  Google Scholar 

  54. Chen, R. J.; Zhao, T.; Wu, W. P.; Wu, F.; Li, L.; Qian, J.; Xu, R.; Wu, H. M.; Albishri, H. M.; Al-Bogami, A. S. et al. Free-standing hierarchically sandwich-type tungsten disulfide nanotubes/graphene anode for lithium-ion batteries. Nano Lett.2014, 14, 5899–5904.

    CAS  Google Scholar 

  55. Niu, F. E.; Yang, J.; Wang, N. N.; Zhang, D. P.; Fan, W. L.; Yang, J.; Qian, Y. T. MoSe2-covered N,P-doped carbon nanosheets as a long-life and high-rate anode material for sodium-ion batteries. Adv. Funct. Mater.2017, 27, 1700522.

    Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (No. 21872058) and the Key Project of Science and Technology in Guangdong Province (No. 2017A010106006).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiang Liu, Guozhong Cao or Weishan Li.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liao, Y., Wu, C., Zhong, Y. et al. Highly dispersed Co-Mo sulfide nanoparticles on reduced graphene oxide for lithium and sodium ion storage. Nano Res. 13, 188–195 (2020). https://doi.org/10.1007/s12274-019-2594-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-019-2594-2

Keywords

Navigation