Skip to main content
Log in

A DNA origami plasmonic sensor with environment-independent read-out

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

DNA origami is a promising technology for its reproducibility, flexibility, scalability and biocompatibility. Among the several potential applications, DNA origami has been proposed as a tool for drug delivery and as a contrast agent, since a conformational change upon specific target interaction may be used to release a drug or produce a physical signal, respectively. However, its conformation should be robust with respect to the properties of the medium in which either the recognition or the read-out take place, such as pressure, viscosity and any other unspecific interaction other than the desired target recognition. Here we report on the read-out robustness of a tetragonal DNA-origami/gold-nanoparticle hybrid structure able to change its configuration, which is transduced in a change of its plasmonic properties, upon interaction with a specific DNA target. We investigated its response when analyzed in three different media: aqueous solution, solid support and viscous gel. We show that, once a conformational variation is produced, it remains unaffected by the subsequent physical interactions with the environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ghosh, S. K.; Pal, T. Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles: From theory to applications. Chem Rev. 2007, 107, 4797–4862.

    Article  CAS  Google Scholar 

  2. Reinhard, B. M.; Siu, M.; Agarwal, H.; Alivisatos, A. P.; Liphardt, J. Calibration of dynamic molecular rulers based on plasmon coupling between gold nanoparticles. Nano Lett. 2005, 5, 2246–2252.

    Article  CAS  Google Scholar 

  3. Prodan, E.; Radloff, C.; Halas, N. J.; Nordlander, P. A hybridization model for the plasmon response of complex nanostructures. Science2003, 302, 419–422.

    Article  CAS  Google Scholar 

  4. Hill, R. T.; Mock, J. J.; Hucknall, A.; Wolter, S. D.; Jokerst, N. M.; Smith, D. R.; Chilkoti, A. Plasmon ruler with angstrom length resolution. ACS Nano2012, 6, 9237–9246.

    Article  CAS  Google Scholar 

  5. Zhang, J.; Fu, Y.; Chowdhury, M. H.; Lakowicz, J. R. Metal-enhanced single-molecule fluorescence on silver particle monomer and dimer: Coupling effect between metal particles. Nano Lett. 2007, 7, 2101–2107.

    Article  CAS  Google Scholar 

  6. Lim, D. K.; Jeon, K. S.; Kim, H. M.; Nam, J. M.; Suh, Y. D. Nanogap-engineerable Raman-active nanodumbbells for single-molecule detection. Nat Mater. 2010, 9, 60–67.

    Article  CAS  Google Scholar 

  7. Taminiau, T. H.; Stefani, F. D.; Segerink, F. B.; Van Hulst, N. F. Optical antennas direct single-molecule emission. Nat Photonics2008, 2, 234- 237.

    Article  CAS  Google Scholar 

  8. Bek, A.; Jansen, R.; Ringler, M.; Mayilo, S.; Klar, T. A.; Feldmann, J. Fluorescence enhancement in hot spots of AFM-designed gold nanoparticle sandwiches. Nano Lett. 2008, 8, 485–490.

    Article  CAS  Google Scholar 

  9. Ding, B. Q.; Deng, Z. T.; Yan, H.; Cabrini, S.; Zuckermann, R. N.; Bokor, J. Gold nanoparticle self-similar chain structure organized by DNA origami. J Am Chem Soc. 2010, 132, 3248–3249.

    Article  CAS  Google Scholar 

  10. Zhou, C.; Duan, X. Y.; Liu, N. A plasmonic nanorod that walks on DNA origami. Nat Commun. 2015, 6, 8102.

    Article  CAS  Google Scholar 

  11. Kuzyk, A.; Schreiber, R.; Fan, Z. Y.; Pardatscher, G.; Roller, E. M.; Högele, A.; Simmel, F. C.; Govorov, A. O.; Liedl, T. DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response. Nature2012, 483, 311–314.

    Article  CAS  Google Scholar 

  12. Rothemund, P. W. K. Folding DNA to create nanoscale shapes and patterns. Nature2006, 440, 297–302.

    Article  CAS  Google Scholar 

  13. Zanacchi, F. C.; Manzo, C.; Alvarez, A. S.; Derr, N. D.; Garcia-Parajo, M. F.; Lakadamyali, M. A DNA origami platform for quantifying protein copy number in super-resolution. Nat Methods2017, 14, 789–792.

    Article  CAS  Google Scholar 

  14. Hudoba, M. W.; Luo, Y.; Zacharias, A.; Poirier, M. G.; Castro, C. E. Dynamic DNA origami device for measuring compressive depletion forces. ACS Nano2017, 11, 6566–6573.

    Article  CAS  Google Scholar 

  15. Hong, F.; Zhang, F.; Liu, Y.; Yan, H. DNA origami: Scaffolds for creating higher order structures. Chem Rev. 2017, 11 7, 12584–12640.

    Google Scholar 

  16. Jiang, Q.; Song, C.; Nangreave, J.; Liu, X. W.; Lin, L.; Qiu, D. L.; Wang, Z. G.; Zou, G. Z.; Liang, X. J.; Yan, H. et al. DNA origami as a carrier for circumvention of drug resistance. J Am Chem Soc. 2012, 134, 13396- 13403.

    Article  CAS  Google Scholar 

  17. Hemmig, E. A.; Fitzgerald, C.; Maffeo, C.; Hecker, L.; Ochmann, S. E.; Aksimentiev, A.; Tinnefeld, P.; Keyser, U. F. Optical voltage sensing using DNA origami. Nano Lett. 2018, 18, 1962–1971.

    Article  CAS  Google Scholar 

  18. Marini, M.; Piantanida, L.; Musetti, R.; Bek, A.; Dong, M. D.; Besenbacher, F.; Lazzarino, M.; Firrao, G. A revertible, autonomous, self-assembled DNA-origami nanoactuator. Nano Lett. 2011, 11, 5449- 5454.

    Article  CAS  Google Scholar 

  19. Torelli, E.; Marini, M.; Palmano, S.; Piantanida, L.; Polano, C.; Scarpellini, A.; Lazzarino, M.; Firrao, G. A DNA origami nanorobot controlled by nucleic acid hybridization. Small2014, 10, 2918–2926.

    Article  CAS  Google Scholar 

  20. Prinz, J.; Schreiber, B.; Olejko, L.; Oertel, J.; Rackwitz, J.; Keller, A.; Bald, I. DNA origami substrates for highly sensitive surface-enhanced Raman scattering. J Phys Chem Lett. 2013, 4, 4140–4145.

    Article  CAS  Google Scholar 

  21. Acuna, G. P.; Möller, F. M.; Holzmeister, P.; Beater, S.; Lalkens, B.; Tinnefeld, P. Fluorescence enhancement at docking sites of DNA-directed self-assembled nanoantennas. Science2012, 338, 506–510.

    Article  CAS  Google Scholar 

  22. Piantanida, L.; Naumenko, D.; Lazzarino, M. Highly efficient gold nanoparticle dimer formation via DNA hybridization. RSC Adv. 2014, 4, 15281–15287.

    Article  CAS  Google Scholar 

  23. Sönnichsen, C.; Reinhard, B. M.; Liphardt, J.; Alivisatos, A. P. A molecular ruler based on plasmon coupling of single gold and silver nanoparticles. Nat Biotechnol. 2005, 23, 741–745.

    Article  Google Scholar 

  24. Kuzyk, A.; Urban, M. J.; Idili, A.; Ricci, F.; Liu, N. Selective control of reconfigurable chiral plasmonic metamolecules. Sci Adv. 2017, 3, e1602803.

    Article  Google Scholar 

  25. Zhou, C.; Xin, L.; Duan, X. Y.; Urban, M. J.; Liu, N. Dynamic plasmonic system that responds to thermal and aptamer-target regulations. Nano Lett. 2018, 18, 7395–7399.

    Article  CAS  Google Scholar 

  26. Schreiber, R.; Luong, N.; Fan, Z. Y.; Kuzyk, A.; Nickels, P. C.; Zhang, T.; Smith, D. M.; Yurke, B.; Kuang, W.; Govorov, A. O. et al. Chiral plasmonic DNA nanostructures with switchable circular dichroism. Nat Commun. 2013, 4, 2948.

  27. Piantanida, L.; Naumenko, D.; Torelli, E.; Marini, M.; Bauer, D. M.; Fruk, L.; Firrao, G.; Lazzarino, M. Plasmon resonance tuning using DNA origami actuation. Chem Commun. 2015, 51, 4789–4792.

    Article  CAS  Google Scholar 

  28. Kim, D. N.; Kilchherr, F.; Dietz, H.; Bathe, M. Quantitative prediction of 3D solution shape and flexibility of nucleic acid nanostructures. Nucleic Acids Res. 2012, 40, 2862–2868.

    Article  CAS  Google Scholar 

  29. Castro, C. E.; Kilchherr, F.; Kim, D. N.; Shiao, E. L.; Wauer, T.; Wortmann, P.; Bathe, M.; Dietz, H. A primer to scaffolded DNA origami. Nat Methods2011, 8, 221–229.

    Article  CAS  Google Scholar 

  30. Masciotti, V.; Naumenko, D.; Lazzarino, M.; Piantanida, L. Tuning gold nanoparticles plasmonic properties by DNA nanotechnology. In DNA Nanotechnology: Methods and Protocols. Zuccheri, G., Ed.; Springer: New York, N Y, 2018; pp 279–297.

    Chapter  Google Scholar 

  31. Dubochet, J.; Adrian, M.; Chang, J. J.; Homo, J. C.; Lepault, J.; McDowall, A. W.; Schultz, P. Cryo-electron microscopy of vitrified specimens. Quart Rev Biophys. 1988, 21, 129–228.

    Article  CAS  Google Scholar 

  32. Glaeser, R. M. Retrospective: Radiation damage and its associated “information limitations”. J Struct Biol. 2008, 163, 271–276.

    Article  CAS  Google Scholar 

  33. Lei, D. S.; Marras, A. E.; Liu, J. F.; Huang, C. M.; Zhou, L. F.; Castro, C. E.; Su, H. J.; Ren, G. Three-dimensional structural dynamics of DNA origami Bennett linkages using individual-particle electron tomography. Nat Commun. 2018, 9, 592.

  34. Zhang, L.; Lei, D. S.; Smith, J. M.; Zhang, M.; Tong, H. M.; Zhang, X.; Lu, Z. Y.; Liu, J. K.; Alivisatos, A. P.; Ren, G. Three-dimensional structural dynamics and fluctuations of DNA-nanogold conjugates by individual-particle electron tomography. Nat Commun. 2016, 7, 11083.

  35. Amenitsch, H.; Rappolt, M.; Kriechbaum, M.; Mio, H.; Laggner, P.; Bernstorff, S. First performance assessment of the small-angle X-ray scattering beamline at ELETTRA. J Synchrotron Radiat. 1998, 5, 506- 508.

    Article  CAS  Google Scholar 

  36. Bernstorff, S.; Amenitsch, H.; Laggner, P. High-throughput asymmetric double-crystal monochromator of the SAXS beamline at ELETTRA. J Synchrotron Radiat. 1998, 5, 1215–1221.

    Article  CAS  Google Scholar 

  37. Forget, A.; Pique, R. A.; Ahmadi, V.; Lüdeke, S.; Shastri, V. P. Mechanically tailored agarose hydrogels through molecular alloying with β-sheet polysaccharides. Macromol Rapid Commun. 2015, 36, 196–203.

    Article  CAS  Google Scholar 

  38. Rüther, A.; Forget, A.; Roy, A.; Carballo, C.; Mießmer, F.; Dukor, R. K.; Nafie, L. A.; Johannessen, C.; Shastri, V. P.; Lüdeke, S. Unravelling a direct role for polysaccharide β-strands in the higher order structure of physical hydrogels. Angew Chem., Int Ed. 2017, 56, 4603–4607.

    Article  Google Scholar 

  39. Mie, G. Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen. Ann Phys. 1908, 330, 377–445.

    Article  Google Scholar 

  40. García De Abajo, F. J. Multiple scattering of radiation in clusters of dielectrics. Phys Rev B1999, 60, 6086–6102.

    Article  Google Scholar 

  41. Myroshnychenko, V.; Rodríguez-Fernández, J.; Pastoriza-Santos, I.; Funston, A. M.; Novo, C.; Mulvaney, P.; Liz-Marzán, L. M.; García De Abajo, F. J. Modelling the optical response of gold nanoparticles. Chem Soc Rev. 2008, 37, 1792–1805.

    Article  CAS  Google Scholar 

  42. Walsh, A. S.; Yin, H. F.; Erben, C. M.; Wood, M. J. A.; Turberfield, A. J. DNA cage delivery to mammalian cells. ACS Nano2011, 5, 5427–5432.

    Article  CAS  Google Scholar 

  43. Lee, H.; Lytton-Jean, A. K. R.; Chen, Y.; Love, K. T.; Park, A. I.; Karagiannis, E. D.; Sehgal, A.; Querbes, W.; Zurenko, C. S.; Jayaraman, M. et al. Molecularly self-assembled nucleic acid nanoparticles for targeted in vivo siRNA delivery. Nat Nanotechnol. 2012, 7, 389–393.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

V. M. acknowledges financial support from MIUR (MIUR Giovani-Ambito “Salute dell’uomo”). Work at the Molecular Foundry, under the research project No. 3376, was supported by the Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. We acknowledge the Facility of Nanofabrication (FNF) of IOM for the support in sample preparation, Simone Dal Zilio and Silvio Greco for help in data analysis and stimulating discussions. We acknowledge Prof. Giuseppe Firrao for valuable comments and inspiring ideas, the NanoInnovation laboratory (Elettra Sincrotrone) for suggestion provided for AFM analysis and the BioLab (Elettra Sincrotrone) for the use of lab and instrumentation.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Valentina Masciotti or Marco Lazzarino.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Masciotti, V., Piantanida, L., Naumenko, D. et al. A DNA origami plasmonic sensor with environment-independent read-out. Nano Res. 12, 2900–2907 (2019). https://doi.org/10.1007/s12274-019-2535-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-019-2535-0

Keywords

Navigation