Skip to main content
Log in

In situ TEM observation of neck formation during oriented attachment of PbSe nanocrystals

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Oriented attachment of nanocrystals is an important route to constructing epitaxially-connected nanocrystal superlattices for various applications. During oriented attachment of semiconductor nanocrystals, neck can be formed between nanocrystals and it strongly influences the properties of the resulting superlattice. However, the neck formation mechanism is poorly understood. Here, we use in situ liquid cell transmission electron microscopy to directly observe the initiation and growth of homoepitaxial necks between PbSe nanocrystals with atomic details. We find that neck initiation occurs slowly (~ 10 s) when two nanocrystals approach to each other within an edge-to-edge distance of 0.6 nm. During neck initiation, Pb and Se atoms defuse from other facets into the gap, forming “dynamic reversible” filaments. Once the filament (neck) width is larger than a critical size of 0.9 nm, it gradually (15 s) widens into a 3-nm-wide neck. The atomic structure of the neck is further obtained using ex situ aberration-corrected scanning TEM imaging. Neck initiation and growth mechanisms are elucidated with density functional theory calculations. Our direct unveiling of the atomic pathways of neck formation during oriented attachment shed light into the fabrication of nanocrystal superlattices with improved structural order and electronic properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhang, X.; Shen, Z.; Liu, J.; Kerisit, S. N.; Bowden, M. E.; Sushko, M. L.; De Yoreo, J. J.; Rosso, K. M. Direction-specific interaction forces underlying zinc oxide crystal growth by oriented attachment. Nat. Commun. 2017, 8, 835.

    Article  CAS  Google Scholar 

  2. Li, D. S.; Nielsen, M. H.; Lee, J. R. I.; Frandsen, C.; Banfield, J. F.; De Yoreo, J. J. Direction-specific interactions control crystal growth by oriented attachment. Science 2012, 336, 1014–1018.

    Article  CAS  Google Scholar 

  3. Whitham, K.; Smilgies, D. M.; Hanrath, T. Entropic, enthalpic, and kinetic aspects of interfacial nanocrystal superlattice assembly and attachment. Chem. Mater. 2018, 30, 54–63.

    Article  CAS  Google Scholar 

  4. Sandeep, C. S. S.; Azpiroz, J. M.; Evers, W. H.; Boehme, S. C.; Moreels, I.; Kinge, S.; Siebbeles, L. D. A.; Infante, I.; Houtepen, A. J. Epitaxially connected PbSe quantum-dot films: Controlled neck formation and optoelectronic properties. ACS Nano 2014, 8, 11499–11511.

    Article  CAS  Google Scholar 

  5. Lim, T. H.; McCarthy, D.; Hendy, S. C.; Stevens, K. J.; Brown, S. A.; Tilley, R. D. Real-time TEM and kinetic Monte Carlo studies of the coalescence of decahedral gold nanoparticles. ACS Nano 2009, 3, 3809–3813.

    Article  CAS  Google Scholar 

  6. Simon, P.; Bahrig, L.; Baburin, I. A.; Formanek, P.; Röder, F.; Sickmann, J.; Hickey, S. G.; Eychmuller, A.; Lichte, H.; Kniep, R. et al. Interconnection of nanoparticles within 2D superlattices of PbS/oleic acid thin films. Adv. Mater. 2014, 26, 3042–3049.

    Article  CAS  Google Scholar 

  7. Whitham, K.; Hanrath, T. Formation of epitaxially connected quantum dot solids: Nucleation and coherent phase transition. J. Phys. Chem. Lett. 2017, 8, 2623–2628.

    Article  CAS  Google Scholar 

  8. Xu, Y. H.; Wang, X. X.; Zhang, W. L.; Lv, F.; Guo, S. J. Recent progress in two-dimensional inorganic quantum dots. Chem. Soc. Rev. 2018, 47, 586–625.

    Article  CAS  Google Scholar 

  9. Talapin, D. V.; Lee, J. S.; Kovalenko, M. V.; Shevchenko, E. V. Prospects of colloidal nanocrystals for electronic and optoelectronic applications. Chem. Rev. 2010, 110, 389–458.

    Article  CAS  Google Scholar 

  10. Boles, M. A.; Engel, M.; Talapin, D. V. Self-assembly of colloidal nanocrystals: From intricate structures to functional materials. Chem. Rev. 2016, 116, 11220–11289.

    Article  CAS  Google Scholar 

  11. Kagan, C. R.; Lifshitz, E.; Sargent, E. H.; Talapin, D. V. Building devices from colloidal quantum dots. Science 2016, 353, aac5523.

    Article  Google Scholar 

  12. Boneschanscher, M. P.; Evers, W. H.; Geuchies, J. J.; Altantzis, T.; Goris, B.; Rabouw, F. T.; van Rossum, S. A. P.; van der Zant, H. S. J.; Siebbeles, L. D. A.; van Tendeloo, G. et al. Long-range orientation and atomic attachment of nanocrystals in 2D honeycomb superlattices. Science 2014, 344, 1377–1380.

    Article  CAS  Google Scholar 

  13. Beugeling, W.; Kalesaki, E.; Delerue, C.; Niquet, Y. M.; Vanmaekelbergh, D.; Smith, C. M. Topological states in multi-orbital HgTe honeycomb lattices. Nat. Commun. 2015, 6, 6316.

    Article  CAS  Google Scholar 

  14. Whitham, K.; Yang, J.; Savitzky, B. H.; Kourkoutis, L. F.; Wise, F.; Hanrath, T. Charge transport and localization in atomically coherent quantum dot solids. Nat. Mater. 2016, 15, 557–563.

    Article  CAS  Google Scholar 

  15. Evers, W. H.; Schins, J. M.; Aerts, M.; Kulkarni, A.; Capiod, P.; Berthe, M.; Grandidier, B.; Delerue, C.; van der Zant, H. S. J.; van Overbeek, C. et al. High charge mobility in two-dimensional percolative networks of PbSe quantum dots connected by atomic bonds. Nat. Commun. 2015, 6, 8195.

    Article  CAS  Google Scholar 

  16. Geuchies, J. J.; van Overbeek, C.; Evers, W. H.; Goris, B.; de Backer, A.; Gantapara, A. P.; Rabouw, F. T.; Hilhorst, J.; Peters, J. L.; Konovalov, O. et al. In situ study of the formation mechanism of two-dimensional superlattices from PbSe nanocrystals. Nat. Mater. 2016, 15, 1248–1254.

    Article  CAS  Google Scholar 

  17. Weidman, M. C.; Smilgies, D. M.; Tisdale, W. A. Kinetics of the self-assembly of nanocrystal superlattices measured by real-time in situ X-ray scattering. Nat. Mater. 2016, 15, 775–781.

    Article  CAS  Google Scholar 

  18. Zaluzhnyy, I. A.; Kurta, R. P.; Andre, A.; Gorobtsov, O. Y.; Rose, M.; Skopintsev, P.; Besedin, I.; Zozulya, A. V.; Sprung, M.; Schreiber, F. et al. Quantifying angular correlations between the atomic lattice and the superlattice of nanocrystals assembled with directional linking. Nano Lett. 2017, 17, 3511–3517.

    Article  CAS  Google Scholar 

  19. Yalcin, A. O.; Fan, Z. C.; Goris, B.; Li, W. F.; Koster, R. S.; Fang, C. M.; van Blaaderen, A.; Casavola, M.; Tichelaar, F. D.; Bals, S. et al. Atomic resolution monitoring of cation exchange in CdSe-PbSe heteronanocrystals during epitaxial solid-solid-vapor growth. Nano Lett. 2014, 14, 3661–3667.

    Article  CAS  Google Scholar 

  20. Cho, K. S.; Talapin, D. V.; Gaschler, W.; Murray, C. B. Designing PbSe nanowires and nanorings through oriented attachment of nanoparticles. J. Am. Chem. Soc. 2005, 127, 7140–7147.

    Article  CAS  Google Scholar 

  21. Evers, W. H.; Goris, B.; Bals, S.; Casavola, M.; de Graaf, J.; van Roij, J.; Dijkstra, M.; Vanmaekelbergh, D. Low-dimensional semiconductor super-lattices formed by geometric control over nanocrystal attachment. Nano Lett. 2013, 13, 2317–2323.

    Article  CAS  Google Scholar 

  22. van Overbeek, C.; Peters, J. L.; van Rossum, S. A. P.; Smits, M.; van Huis, M. A.; Vanmaekelbergh, D. Interfacial self-assembly and oriented attachment in the family of PbX (X = S, Se, Te) nanocrystals. J. Phys. Chem. C 2018, 122, 12464–12473.

    Article  CAS  Google Scholar 

  23. Tan, S. F.; Chee, S. W.; Lin, G. H.; Mirsaidov, U. Direct observation of interactions between nanoparticles and nanoparticle self-assembly in solution. Acc. Chem. Res. 2017, 50, 1303–1312.

    Article  CAS  Google Scholar 

  24. Qi, K.; Wei, J. K.; Sun, M. H.; Huang, Q. M.; Li, X. M.; Xu, Z.; Wang, W. L.; Bai, X. D. Real-time observation of deep lithiation of tungsten oxide nanowires by in situ electron microscopy. Angew. Chem., Int. Ed. 2015, 127, 15437–15440.

    Article  Google Scholar 

  25. Wu, S. Y.; Li, M. R.; Sun, Y. G. In situ synchrotron X-ray characterization shining light on the nucleation and growth kinetics of colloidal nanoparticles. Angew. Chem., Int. Ed. 2019, 58, 8987–8995.

    Article  CAS  Google Scholar 

  26. Kim, J.; Ou, Z. H.; Jones, M. R.; Song, X. H.; Chen, Q. Imaging the polymerization of multivalent nanoparticles in solution. Nat. Commun. 2017, 8, 761.

    Article  Google Scholar 

  27. de Yoreo, J. J.; Gilbert, P. U. P. A.; Sommerdijk, N. A. J. M.; Penn, R. L.; Whitelam, S.; Joester, D.; Zhang, H. Z.; Rimer, J. D.; Navrotsky, A.; Banfield, J. F. et al. Crystallization by particle attachment in synthetic, biogenic, and geologic environments. Science 2015, 349, aaa6760.

    Article  Google Scholar 

  28. Urban, J. J. Prospects for thermoelectricity in quantum dot hybrid arrays. Nat. Nanotechnol. 2015, 10, 997–1001.

    Article  CAS  Google Scholar 

  29. Liao, H. G.; Zheng, H. Liquid cell transmission electron microscopy. Annu. Rev. Phys. Chem. 2016, 67, 719–747.

    Article  CAS  Google Scholar 

  30. Yuan, W. T.; Zhang, D. W.; Ou, Y.; Fang, K.; Zhu, B. E.; Yang, H. S.; Hansen, T. W.; Wagner, J. B.; Zhang, Z.; Gao, Y. et al. Direct in situ TEM visualization and insight into the facet-dependent sintering behaviors of gold on TiO2. Angew. Chem., Int. Ed. 2018, 57, 16827–16831.

    Article  CAS  Google Scholar 

  31. Sutter, E.; Sutter, P.; Tkachenko, A. V.; Krahne, R.; de Graaf, J.; Arciniegas, M.; Manna, L. In situ microscopy of the self-assembly of branched nanocrystals in solution. Nat. Commun. 2016, 7, 11213.

    Article  CAS  Google Scholar 

  32. Kim, B. H.; Yang, J.; Lee, D.; Choi, B. K.; Hyeon, T.; Park, J. Liquidphase transmission electron microscopy for studying colloidal inorganic nanoparticles. Adv. Mater. 2018, 30, 1703316.

    Article  Google Scholar 

  33. Wang, Y.; Peng, X. X.; Abelson, A.; Xiao, P. H.; Qian, C.; Yu, L.; Ophus, C.; Ercius, P.; Wang, L. W.; Law, M. et al. Dynamic deformability of individual PbSe nanocrystals during superlattice phase transitions. Sci. Adv. 2019, 5, eaaw5623.

    Article  Google Scholar 

  34. Klokkenburg, M.; Houtepen, A. J.; Koole, R.; de Folter, J. W. J.; Erné, B. H.; van Faassen, E.; Vanmaekelbergh, D. Dipolar structures in colloidal dispersions of PbSe and CdSe quantum dots. Nano Lett. 2007, 7, 2931–2936.

    Article  CAS  Google Scholar 

  35. Yuk, J. M.; Park, J.; Ercius, P.; Kim, K.; Hellebusch, D. J.; Crommie, M. F.; Lee, J. Y.; Zettl, A.; Alivisatos, A. P. High-resolution em of colloidal nanocrystal growth using graphene liquid cells. Science 2012, 336, 61–64.

    Article  CAS  Google Scholar 

  36. Jin, B.; Sushko, M. L.; Liu, Z. M.; Jin, C. H.; Tang, R. K. In situ liquid cell tem reveals bridge-induced contact and fusion of Au nanocrystals in aqueous solution. Nano Lett. 2018, 18, 6551–6556.

    Article  CAS  Google Scholar 

  37. Anand, U.; Lu, J. Y.; Loh, D.; Aabdin, Z.; Mirsaidov, U. Hydration layer-mediated pairwise interaction of nanoparticles. Nano Lett. 2016, 16, 786–790.

    Article  CAS  Google Scholar 

  38. Zhu, C.; Liang, S. X.; Song, E. H.; Zhou, Y. J.; Wang, W.; Shan, F.; Shi, Y. T.; Hao, C.; Yin, K. B.; Zhang, T. et al. In-situ liquid cell transmission electron microscopy investigation on oriented attachment of gold nanoparticles. Nat. Commun. 2018, 9, 421.

    Article  Google Scholar 

  39. Anderson, N. C.; Hendricks, M. P.; Choi, J. J.; Owen, J. S. Ligand exchange and the stoichiometry of metal chalcogenide nanocrystals: Spectroscopic observation of facile metal-carboxylate displacement and binding. J. Am. Chem. Soc. 2013, 135, 18536–18548.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the U.S. Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences (BES), Materials Sciences and Engineering Division under Contract No. DE-AC02-05-CH11231 within the in-situ TEM (KC22ZH) program. Y. W., A. A., C. Q., and M. L. were supported by the UC Office of the President under the UC Laboratory Fees Research Program Collaborative Research and Training Award LFR-17-477148. X. P. acknowledges financial support from the China Scholarship Council. Work at the Molecular Foundry was supported by the Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haimei Zheng.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Peng, X., Abelson, A. et al. In situ TEM observation of neck formation during oriented attachment of PbSe nanocrystals. Nano Res. 12, 2549–2553 (2019). https://doi.org/10.1007/s12274-019-2483-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-019-2483-8

Keywords

Navigation