Skip to main content
Log in

Conductive polymers for stretchable supercapacitors

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Stretchable energy storage devices, maintaining the capability of steady operation under large mechanical strain, have become increasing more important with the development of stretchable electronic devices. Stretchable supercapacitors (SSCs), with high power density, modest energy density, and superior mechanical properties are regarded as one of the most promising power supplies to stretchable electronic devices. Conductive polymers, such as polyaniline (PANI), polypyrrole (PPy), polythiophene (PTh) and poly(3,4-ehtylenedioxythiophene) (PEDOT), are among the well-studied electroactive materials for the construction of SSCs because of their high specific theoretical capacity, excellent electrochemical activity, light weight, and high flexibility. Much effort has been devoted to developing stretchable, conductive polymer-based SSCs with different device structures, such as sandwich-type and fiber-shaped type SSCs. This review summarizes the material and structural design for conductive polymer-based SSCs and discusses the challenge and important directions in this emerging field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang, Y.; Zhu, C. X.; Pfattner, R.; Yan, H. P.; Jin, L. H.; Chen, S. C.; Molina-Lopez, F.; Lissel, F.; Liu, J.; Rabiah, N. I. et al. A highly stretchable, transparent, and conductive polymer. Sci. Adv. 2017, 3, e1602076.

    Article  Google Scholar 

  2. Yu, G. H.; Xie, X.; Pan, L. J.; Bao, Z. N.; Cui, Y. Hybrid nanostructured materials for high-performance electrochemical capacitors. Nano Energy 2013, 2, 213–234.

    Article  Google Scholar 

  3. Dickey, M. D. Stretchable and soft electronics using liquid metals. Adv. Mater. 2017, 29, 1606425.

    Article  Google Scholar 

  4. Yun, J.; Song, C.; Lee, H.; Park, H.; Jeong, Y. R.; Kim, J. W.; Jin, S. W.; Oh, S. Y.; Sun, L. F.; Zi, G. et al. Stretchable array of high-performance micro-supercapacitors charged with solar cells for wireless powering of an integrated strain sensor. Nano Energy 2018, 49, 644–654.

    Article  Google Scholar 

  5. Souri, H.; Bhattacharyya, D. Highly stretchable multifunctional wearable devices based on conductive cotton and wool fabrics. ACS Appl. Mater. Interfaces 2018, 10, 20845–20853.

    Article  Google Scholar 

  6. Peng, L. L.; Peng, X.; Liu, B. R.; Wu, C. Z.; Xie, Y.; Yu, G. H. Ultrathin two-dimensional MnO2/graphene hybrid nanostructures for high-performance, flexible planar supercapacitors. Nano Lett. 2013, 13, 2151–2157.

    Article  Google Scholar 

  7. Gong, S.; Cheng, W. L. Toward soft skin-like wearable and implantable energy devices. Adv. Energy Mater. 2017, 7, 1700648.

    Article  Google Scholar 

  8. Li, H. S.; Ding, Y.; Ha, H.; Shi, Y.; Peng, L. L.; Zhang, X. G.; Ellison, C. J.; Yu, G. H. An all-stretchable-component sodium-ion full battery. Adv. Mater. 2017, 29, 1700898.

    Article  Google Scholar 

  9. An, T. C.; Cheng, W. L. Recent progress in stretchable supercapacitors. J. Mater. Chem. A 2018, 6, 15478–15494.

    Article  Google Scholar 

  10. Shang, Y. Y.; Wang, C. H.; He, X. D.; Li, J. J.; Peng, Q. Y.; Shi, E. Z.; Wang, R. G.; Du, S. Y.; Cao, A. Y.; Li, Y. B. Self-stretchable, helical carbon nanotube yarn supercapacitors with stable performance under extreme deformation conditions. Nano Energy 2015, 12, 401–409.

    Article  Google Scholar 

  11. Yun, T. G.; Hwang, B. L.; Kim, D.; Hyun, S.; Han, S. M. Polypyrrole-MnO2-coated textile-based flexible-stretchable supercapacitor with high electrochemical and mechanical reliability. ACS Appl. Mater. Interfaces 2015, 7, 9228–9234.

    Article  Google Scholar 

  12. Choi, C.; Lee, J. M.; Kim, S. H.; Kim, S. J.; Di, J. T.; Baughman, R. H. Twistable and stretchable sandwich structured fiber for wearable sensors and supercapacitors. Nano Lett. 2016, 16, 7677–7684.

    Article  Google Scholar 

  13. Kim, K. J.; Lee, J. A.; Lima, M. D.; Baughman, R. H.; Kim, S. J. Highly stretchable hybrid nanomembrane supercapacitors. RSC Adv. 2016, 6, 24756–24759.

    Article  Google Scholar 

  14. Dong, K.; Wang, Y. C.; Deng, J. N.; Dai, Y. J.; Zhang, S. L.; Zou, H. Y.; Gu, B. H.; Sun, B. Z.; Wang, Z. L. A highly stretchable and washable allyarn- based self-charging knitting power textile composed of fiber triboelectric nanogenerators and supercapacitors. ACS Nano 2017, 11, 9490–9499.

    Article  Google Scholar 

  15. Gilshteyn, E. P.; Amanbayev, D.; Anisimov, A. S.; Kallio, T.; Nasibulin, A. G. All-nanotube stretchable supercapacitor with low equivalent series resistance. Sci. Rep. 2017, 7, 17449.

    Article  Google Scholar 

  16. Zhu, Y. P.; Li, N.; Lv, T.; Yao, Y.; Peng, H. N.; Shi, J.; Cao, S. K.; Chen, T. Ag-doped PEDOT:PSS/CNT composites for thin-film all-solid-state supercapacitors with a stretchability of 480%. J. Mater. Chem. A 2018, 6, 941–947.

    Article  Google Scholar 

  17. Guo, Y.; Zheng, K. Q.; Wan, P. B. A flexible stretchable hydrogel electrolyte for healable all-in-one configured supercapacitors. Small 2018, 14, 1704497.

    Article  Google Scholar 

  18. Zhang, N.; Zhou, W. Y.; Zhang, Q.; Luan, P. S.; Cai, L.; Yang, F.; Zhang, X.; Fan, Q. X.; Zhou, W. B.; Xiao, Z. J. et al. Biaxially stretchable supercapacitors based on the buckled hybrid fiber electrode array. Nanoscale 2015, 7, 12492–12497.

    Article  Google Scholar 

  19. Guo, F. M.; Xu, R. Q.; Cui, X.; Zhang, L.; Wang, K. L.; Yao, Y. W.; Wei, J. Q. High performance of stretchable carbon nanotube–polypyrrole fiber supercapacitors under dynamic deformation and temperature variation. J. Mater. Chem. A 2016, 4, 9311–9318.

    Article  Google Scholar 

  20. Pu, J.; Wang, X. H.; Xu, R. X.; Komvopoulos, K. Highly stretchable microsupercapacitor arrays with honeycomb structures for integrated wearable electronic systems. ACS Nano 2016, 10, 9306–9315.

    Article  Google Scholar 

  21. Choi, C.; Kim, J. H.; Sim, H. J.; Di, J. T.; Baughman, R. H.; Kim, S. J. Microscopically buckled and macroscopically coiled fibers for ultra-stretchable supercapacitors. Adv. Energy Mater. 2017, 7, 1602021.

    Article  Google Scholar 

  22. Wang, X.; Yang, C. Y.; Jin, J.; Li, X. W.; Cheng, Q. L.; Wang, G. C. Highperformance stretchable supercapacitors based on intrinsically stretchable acrylate rubber/MWCNTs@conductive polymer composite electrodes. J. Mater. Chem. A 2018, 6, 4432–4442.

    Article  Google Scholar 

  23. Lota, K.; Khomenko, V.; Frackowiak, E. Capacitance properties of poly(3,4- ethylenedioxythiophene)/carbon nanotubes composites. J. Phys. Chem. Solids 2004, 65, 295–301.

    Article  Google Scholar 

  24. Shi, Y.; Peng, L. L.; Ding, Y.; Zhao, Y.; Yu, G. H. Nanostructured conductive polymers for advanced energy storage. Chem. Soc. Rev. 2015, 44, 6684–6696.

    Article  Google Scholar 

  25. Shi, Y.; Peng, L. L.; Yu, G. H. Nanostructured conducting polymer hydrogels for energy storage applications. Nanoscale 2015, 7, 12796–12806.

    Article  Google Scholar 

  26. Xie, Y. Z.; Liu, Y.; Zhao, Y. D.; Tsang, Y. H.; Lau, S. P.; Huang, H. T.; Chai, Y. Stretchable all-solid-state supercapacitor with wavy shaped polyaniline/graphene electrode. J. Mater. Chem. A 2014, 2, 9142–9149.

    Article  Google Scholar 

  27. Jin, H. Y.; Zhou, L. M.; Mak, C. L.; Huang, H. T.; Tang, W. M.; Chan, H. L. W. High-performance fiber-shaped supercapacitors using carbon fiber thread (CFT)@polyanilne and functionalized CFT electrodes for wearable/ stretchable electronics. Nano Energy 2015, 11, 662–670.

    Article  Google Scholar 

  28. Zang, X. B.; Zhu, M.; Li, X.; Li, X. M.; Zhen, Z.; Lao, J. C.; Wang, K. L.; Kang, F. Y.; Wei, B. Q.; Zhu, H. W. Dynamically stretchable supercapacitors based on graphene woven fabric electrodes. Nano Energy 2015, 15, 83–91.

    Article  Google Scholar 

  29. Guo, K.; Wang, X. F.; Hu, L. T.; Zhai, T. Y.; Li, H. Q.; Yu, N. Highly stretchable waterproof fiber asymmetric supercapacitors in an integrated structure. ACS Appl. Mater. Interfaces 2018, 10, 19820–19827.

    Article  Google Scholar 

  30. Li, P. P.; Jin, Z. Y.; Peng, L. L.; Zhao, F.; Xiao, D.; Jin, Y.; Yu, G. H. Stretchable all-gel-state fiber-shaped supercapacitors enabled by macromolecularly interconnected 3D graphene/nanostructured conductive polymer hydrogels. Adv. Mater. 2018, 30, 1800124.

    Article  Google Scholar 

  31. Qi, R. J.; Nie, J. H.; Liu, M. Y.; Xia, M. Y.; Lu, X. M. Stretchable V2O5/ PEDOT supercapacitors: A modular fabrication process and charging with triboelectric nanogenerators. Nanoscale 2018, 10, 7719–7725.

    Article  Google Scholar 

  32. Wang, S. L.; Liu, N. S.; Su, J.; Li, L. Y.; Long, F.; Zou, Z. G.; Jiang, X. L.; Gao, Y. H. Highly stretchable and self-healable supercapacitor with reduced graphene oxide based fiber springs. ACS Nano 2017, 11, 2066–2074.

    Article  Google Scholar 

  33. Nyström, G.; Razaq, A.; Strømme, M.; Nyholm, L.; Mihranyan, A. Ultrafast all-polymer paper-based batteries. Nano Lett. 2009, 9, 3635–3639.

    Article  Google Scholar 

  34. Liu, L.; Tian, Q. Y.; Yao, W. J.; Li, M. X.; Li, Y. W.; Wu, W. All-printed ultraflexible and stretchable asymmetric in-plane solid-state supercapacitors (ASCs) for wearable electronics. J. Power Sources 2018, 397, 59–67.

    Article  Google Scholar 

  35. Zhao, X.; Wang, K. Q.; Li, B.; Wang, C.; Ding, Y. Q.; Li, C. Q.; Mao, L. Q.; Lin, Y. Q. Fabrication of a flexible and stretchable nanostructured gold electrode using a facile ultraviolet-irradiation approach for the detection of nitric oxide released from cells. Anal. Chem. 2018, 90, 7158–7163.

    Article  Google Scholar 

  36. An, T. C.; Ling, Y. Z.; Gong, S.; Zhu, B. W.; Zhao, Y. M.; Dong, D. S.; Yap, L. W.; Wang, Y.; Cheng, W. L. A wearable second skin-like multifunctional supercapacitor with vertical gold nanowires and electrochromic polyaniline. Adv. Mater. Technol., in press, DOI: 10.1002/admt.201800473.

  37. Wen, L.; Li, F.; Cheng, H. M. Carbon nanotubes and graphene for flexible electrochemical energy storage: From materials to devices. Adv. Mater. 2016, 28, 4306–4337.

    Article  Google Scholar 

  38. Huang, Y.; Zhong, M.; Shi, F. K.; Liu, X. Y.; Tang, Z. J.; Wang, Y. K.; Huang, Y.; Hou, H. Q.; Xie, X. M.; Zhi, C. Y. An intrinsically stretchable and compressible supercapacitor containing a polyacrylamide hydrogel electrolyte. Angew. Chem., Int. Ed. 2017, 56, 9141–9145.

    Article  Google Scholar 

  39. Cuentas-Gallegos, A. K.; Lira-Cantú, M.; Casañ-Pastor, N.; Gómez-Romero, P. Nanocomposite hybrid molecular materials for application in solid-state electrochemical supercapacitors. Adv. Funct. Mater. 2005, 15, 1125–1133.

    Article  Google Scholar 

  40. Park, J. H.; Ko, J. M.; Park, O. O.; Kim, D. W. Capacitance properties of graphite/polypyrrole composite electrode prepared by chemical polymerization of pyrrole on graphite fiber. J. Power Sources 2002, 105, 20–25.

    Article  Google Scholar 

  41. Bhat, D. K.; Kumar, M. S. N and P doped poly(3,4-ethylenedioxythiophene) electrode materials for symmetric redox supercapacitors. J. Mater. Sci. 2007, 42, 8158–8162.

    Article  Google Scholar 

  42. Zhao, C.; Shu, K. W.; Wang, C. Y.; Gambhir, S.; Wallace, G. G. Reduced graphene oxide and polypyrrole/reduced graphene oxide composite coated stretchable fabric electrodes for supercapacitor application. Electrochim. Acta 2015, 172, 12–19.

    Article  Google Scholar 

  43. Sun, J. F.; Huang, Y.; Fu, C. X.; Wang, Z. Y.; Huang, Y.; Zhu, M. S.; Zhi, C. Y.; Hu, H. High-performance stretchable yarn supercapacitor based on PPy@CNTs@urethane elastic fiber core spun yarn. Nano Energy 2016, 27, 230–237.

    Article  Google Scholar 

  44. Xu, J.; Ding, J. N.; Zhou, X. S.; Zhang, Y.; Zhu, W. J.; Liu, Z. F.; Ge, S. H.; Yuan, N. Y.; Fang, S. L.; Baughman, R. H. Enhanced rate performance of flexible and stretchable linear supercapacitors based on polyaniline@ Au@carbon nanotube with ultrafast axial electron transport. J. Power Sources 2017, 340, 302–308.

    Article  Google Scholar 

  45. Huang, Y.; Tao, J. Y.; Meng, W. J.; Zhu, M. S.; Huang, Y.; Fu, Y. Q.; Gao, Y. H.; Zhi, C. Y. Super-high rate stretchable polypyrrole-based supercapacitors with excellent cycling stability. Nano Energy 2015, 11, 518–525.

    Article  Google Scholar 

  46. Zhao, F.; Shi, Y.; Pan, L. J.; Yu, G. H. Multifunctional nanostructured conductive polymer gels: Synthesis, properties, and applications. Acc. Chem. Res. 2017, 50, 1734–1743.

    Article  Google Scholar 

  47. Shi, Y.; Yu, G. H. Designing hierarchically nanostructured conductive polymer gels for electrochemical energy storage and conversion. Chem. Mater. 2016, 28, 2466–2477.

    Article  Google Scholar 

  48. Wang, Y. Q.; Shi, Y.; Pan, L. J.; Ding, Y.; Zhao, Y.; Li, Y.; Shi, Y.; Yu, G. H. Dopant-enabled supramolecular approach for controlled synthesis of nanostructured conductive polymer hydrogels. Nano Lett. 2015, 15, 7736–7741.

    Article  Google Scholar 

  49. Pan, L. J.; Yu, G. H.; Zhai, D. Y.; Lee, H. R.; Zhao, W. T.; Liu, N.; Wang, H. L.; Tee, B. C. K.; Shi, Y.; Cui, Y. et al. Hierarchical nanostructured conducting polymer hydrogel with high electrochemical activity. Proc. Natl. Acad. Sci. USA 2012, 109, 9287–9292.

    Article  Google Scholar 

  50. Zhao, F.; Bae, J.; Zhou, X. Y.; Guo, Y. H.; Yu, G. H. Nanostructured functional hydrogels as an emerging platform for advanced energy technologies. Adv. Mater. 2018, 30, 1801796.

    Article  Google Scholar 

  51. Peng, L. L.; Zhu, Y.; Li, H. S.; Yu, G. H. Chemically integrated inorganicgraphene two-dimensional hybrid materials for flexible energy storage devices. Small 2016, 12, 6183–6199.

    Article  Google Scholar 

  52. Shi, Y.; Zhang, J.; Pan, L. J.; Shi, Y.; Yu, G. H. Energy gels: A bio-inspired material platform for advanced energy applications. Nano Today 2016, 11, 738–762.

    Article  Google Scholar 

  53. Ren, J.; Ren, R. P.; Lv, Y. K. Stretchable all-solid-state supercapacitors based on highly conductive polypyrrole-coated graphene foam. Chem. Eng. J. 2018, 349, 111–118.

    Article  Google Scholar 

  54. Ren, D. Y.; Dong, L. B.; Wang, J. J.; Ma, X. P.; Xu, C. J.; Kang, F. Y. Facile preparation of high-performance stretchable fiber-like electrodes and supercapacitors. Chemistryselect 2018, 3, 4179–4184.

    Article  Google Scholar 

  55. Zhang, Z. T.; Wang, L.; Li, Y. M.; Wang, Y. H.; Zhang, J.; Guan, G. Z.; Pan, Z. Y.; Zheng, G. F.; Peng, H. S. Nitrogen-doped core-sheath carbon nanotube array for highly stretchable supercapacitor. Adv. Energy Mater. 2017, 7, 1601814.

    Article  Google Scholar 

  56. Li, K.; Huang, Y. S.; Liu, J. J.; Sarfraz, M.; Agboola, P. O.; Shakir, I.; Xu, Y. X. A three-dimensional graphene framework-enabled high-performance stretchable asymmetric supercapacitor. J. Mater. Chem. A 2018, 6, 1802–1808.

    Article  Google Scholar 

  57. Zhang, Z. T.; Deng, J.; Li, X. Y.; Yang, Z. B.; He, S. S.; Chen, X. L.; Guan, G. Z.; Ren, J.; Peng, H. S. Superelastic supercapacitors with high performances during stretching. Adv. Mater. 2015, 27, 356–362.

    Article  Google Scholar 

  58. Yu, J. L.; Lu, W. B.; Smith, J. P.; Booksh, K. S.; Meng, L. H.; Huang, Y. D.; Li, Q. W.; Byun, J. H.; Oh, Y.; Yan, Y. S. A high performance stretchable asymmetric fiber-shaped supercapacitor with a core-sheath helical structure. Adv. Energy Mater. 2017, 7, 1600976.

    Article  Google Scholar 

  59. Zhang, Q. C.; Sun, J.; Pan, Z. H.; Zhang, J.; Zhao, J. X.; Wang, X. N.; Zhang, C. X.; Yao, Y. G.; Lu, W. B.; Li, Q. W. et al. Stretchable fibershaped asymmetric supercapacitors with ultrahigh energy density. Nano Energy 2017, 39, 219–228.

    Article  Google Scholar 

  60. Moussa, M.; Shi, G.; Wu, H.; Zhao, Z. H.; Voelcker, N. H.; Losic, D.; Ma, J. Development of flexible supercapacitors using an inexpensive graphene/PEDOT/MnO2 sponge composite. Materials & Design 2017, 125, 1–10.

    Article  Google Scholar 

  61. Cheng, X. L.; Zhang, J.; Ren, J.; Liu, N.; Chen, P. N.; Zhang, Y.; Deng, J.; Wang, Y. G.; Peng, H. S. Design of a hierarchical ternary hybrid for a fiber-shaped asymmetric supercapacitor with high volumetric energy density. J. Phys. Chem. C 2016, 120, 9685–9691.

    Article  Google Scholar 

  62. Wu, H.; Zhang, Y. N.; Yuan, W. Y.; Zhao, Y. X.; Luo, S. H.; Yuan, X. W.; Zheng, L. X.; Cheng, L. F. Highly flexible, foldable and stretchable Ni–Co layered double hydroxide/polyaniline/bacterial cellulose electrodes for high-performance all-solid-state supercapacitors. J. Mater. Chem. A 2018, 6, 16617–16626.

    Article  Google Scholar 

  63. Chu, X.; Zhang, H. T.; Su, H.; Liu, F. Y.; Gu, B. N.; Huang, H. C.; Zhang, H. P.; Deng, W.; Zheng, X. T.; Yang, W. Q. A novel stretchable supercapacitor electrode with high linear capacitance. Chem. Eng. J. 2018, 349, 168–175.

    Article  Google Scholar 

  64. Zhao, Y.; Chen, S.; Hu, J.; Yu, J. L.; Feng, G. C.; Yang, B.; Li, C. H.; Zhao, N.; Zhu, C. Z.; Xu, J. Microgel-enhanced double network hydrogel electrode with high conductivity and stability for intrinsically stretchable and flexible all-gel-state supercapacitor. ACS Appl. Mater. Interfaces 2018, 10, 19323–19330.

    Article  Google Scholar 

  65. Chen, T.; Hao, R.; Peng, H. S.; Dai, L. M. High-performance, stretchable, wire-shaped supercapacitors. Angew. Chem., Int. Ed. 2015, 54, 618–622.

    Google Scholar 

  66. Shi, M. J.; Yang, C.; Song, X. F.; Liu, J.; Zhao, L. P.; Zhang, P.; Gao, L. Stretchable wire-shaped supercapacitors with high energy density for size-adjustable wearable electronics. Chem. Eng. J. 2017, 322, 538–545.

    Article  Google Scholar 

  67. Wang, Z. P.; Cheng, J. L.; Guan, Q.; Huang, H.; Li, Y. C.; Zhou, J. W.; Ni, W.; Wang, B.; He, S. S.; Peng, H. S. All-in-one fiber for stretchable fiber-shaped tandem supercapacitors. Nano Energy 2018, 45, 210–219.

    Article  Google Scholar 

  68. Wu, C. Z.; Lu, X. L.; Peng, L. L.; Xu, K.; Peng, X.; Huang, J. L.; Yu, G. H.; Xie, Y. Two-dimensional vanadyl phosphate ultrathin nanosheets for high energy density and flexible pseudocapacitors. Nat. Commun. 2013, 4, 2431.

    Article  Google Scholar 

  69. Zhou, G. H.; Kim, N. R.; Chun, S. E.; Lee, W.; Um, M. K.; Chou, T. W.; Islam, M. F.; Byun, J. H.; Oh, Y. Highly porous and easy shapeable polydopamine derived graphene-coated single walled carbon nanotube aerogels for stretchable wire-type supercapacitors. Carbon 2018, 130, 137–144.

    Article  Google Scholar 

  70. Huang, Y.; Zhong, M.; Huang, Y.; Zhu, M. S.; Pei, Z. X.; Wang, Z. F.; Xue, Q.; Xie, X. M.; Zhi, C. Y. A self-healable and highly stretchable supercapacitor based on a dual crosslinked polyelectrolyte. Nat. Commun. 2015, 6, 10310.

    Article  Google Scholar 

  71. Lee, H.; Hong, S.; Lee, J.; Suh, Y. D.; Kwon, J.; Moon, H.; Kim, H.; Yeo, J.; Ko, S. H. Highly stretchable and transparent supercapacitor by Ag-Au core-shell nanowire network with high electrochemical stability. ACS Appl. Mater. Interfaces 2016, 8, 15449–15458.

    Article  Google Scholar 

  72. Moon, H.; Lee, H.; Kwon, J.; Suh, Y. D.; Kim, D. H.; Ha, I.; Yeo, J.; Hong, S.; Ko, S. H. Ag/Au/polypyrrole core-shell nanowire network for transparent, stretchable and flexible supercapacitor in wearable energy devices. Sci. Rep. 2017, 7, 41981.

    Article  Google Scholar 

  73. Hao, G. P.; Hippauf, F.; Oschatz, M.; Wisser, F. M.; Leifert, A.; Nickel, W.; Mohamed-Noriega, N.; Zheng, Z. K.; Kaskel, S. Stretchable and semitransparent conductive hybrid hydrogels for flexible supercapacitors. ACS Nano 2014, 8, 7138–7146.

    Article  Google Scholar 

  74. Zhang, N.; Luan, P. S.; Zhou, W. Y.; Zhang, Q.; Cai, L.; Zhang, X.; Zhou, W. B.; Fan, Q. X.; Yang, F.; Zhao, D. et al. Highly stretchable pseudocapacitors based on buckled reticulate hybrid electrodes. Nano Res. 2014, 7, 1680–1690.

    Article  Google Scholar 

  75. Lv, Z. S.; Tang, Y. X.; Zhu, Z. Q.; Wei, J. Q.; Li, W. L.; Xia, H. R.; Jiang, Y.; Liu, Z. Y.; Luo, Y. F.; Ge, X. et al. Honeycomb-lantern-inspired 3D stretchable supercapacitors with enhanced specific areal capacitance. Adv. Mater. 2018, 30, 1805468.

    Article  Google Scholar 

  76. Chen, C.; Cao, J.; Wang, X. Y.; Lu, Q. Q.; Han, M. M.; Wang, Q. R.; Dai, H. T.; Niu, Z. Q.; Chen, J.; Xie, S. S. Highly stretchable integrated system for micro-supercapacitor with AC line filtering and UV detector. Nano Energy 2017, 42, 187–194.

    Article  Google Scholar 

  77. Li, L.; Lou, Z.; Han, W.; Chen, D.; Jiang, K.; Shen, G. Z. Highly stretchable micro-supercapacitor arrays with hybrid MWCNT/PANI electrodes. Adv. Mater. Technol. 2017, 2, 1600282.

    Article  Google Scholar 

  78. Lim, Y.; Yoon, J.; Yun, J.; Kim, D.; Hong, S. Y.; Lee, S. J.; Zi, G.; Ha, J. S. Correction to biaxially stretchable, integrated array of high performance microsupercapacitors. ACS Nano 2015, 9, 6634.

    Article  Google Scholar 

  79. Hu, R. F.; Zheng, J. P. Preparation of high strain porous polyvinyl alcohol/ polyaniline composite and its applications in all-solid-state supercapacitor. J. Power Sources 2017, 364, 200–207.

    Article  Google Scholar 

  80. Tang, Q. Q.; Chen, M. M.; Yang, C. Y.; Wang, W. Q.; Bao, H.; Wang, G. C. Enhancing the energy density of asymmetric stretchable supercapacitor based on wrinkled CNT@MnO2 cathode and CNT@polypyrrole anode. ACS Appl. Mater. Interfaces 2015, 7, 15303–15313.

    Article  Google Scholar 

  81. Shi, Y. H.; Zhang, Y.; Jia, L. M.; Zhang, Q.; Xu, X. H. Stretchable and self-healing integrated all-gel-state supercapacitors enabled by a notch-insensitive supramolecular hydrogel electrolyte. ACS Appl. Mater. Interfaces 2018, 10, 36028–36036.

    Article  Google Scholar 

Download references

Acknowledgements

Y. Q. W. is thankful for financial support from the Shandong Scientific Research Awards Foundation for Outstanding Young Scientists (No. ZR2018BEM030), Scientific Research Foundation of Shandong University of Science and Technology for Recruited Talents (No. 2017RCJJ058) and the Program for Tsingtao Al-ion Power and Energy-storage Battery Research Team in the University. G. H. Y. acknowledges financial support from the Welch Foundation award (No. F-1861), Alfred P. Sloan Research Fellowship, and Camille Dreyfus Teacher-Scholar Award.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yaqun Wang or Guihua Yu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Ding, Y., Guo, X. et al. Conductive polymers for stretchable supercapacitors. Nano Res. 12, 1978–1987 (2019). https://doi.org/10.1007/s12274-019-2296-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-019-2296-9

Keywords

Navigation