Skip to main content
Log in

Soft and transient magnesium plasmonics for environmental and biomedical sensing

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Due to its controlled reaction with water and biofluids, Mg as a dissolvable conductor has enabled the development of many transient electronic devices. In addition, Mg is a novel plasmonic material with high extinction efficiency, but its transientoptical properties have not been explored thoroughly. In this study, for the first time, we exploit the transient and tunable plasmonic properties of Mg in environmental and biomedical sensor applications. We used soft nanoimprint lithography to fabricate flexible and large-area Mg plasmonic structures that can be applied on the human skin. Their resonance (or color) can be tuned in the visible range by gradual Mg dissolution in a water fluid or vapor-rich environment; these structures can be easily implemented as passive optical sensors without the need for complex electronic circuits or a power supply. We demonstrate the applications of our optical sensors in the accurate monitoring of environmental humidity and physiological detection of sweat loss on the human skin during exercise. Our devices could be used as decomposable/resorbable optical sensors and can help minimize long-term health effects and environmental risks associated with consumer device waste, which will lead to many new possibilities in transient photonic device applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Stewart, M. E.; Anderton, C. R.; Thompson, L. B.; Maria, J.; Gray, S. K.; Rogers, J. A.; Nuzzo, R. G. Nanostructured plasmonic sensors. Chem. Rev. 2008, 108, 494–521.

    Article  Google Scholar 

  2. Yao, J. M.; Le, A.-P.; Gray, S. K.; Moore, J. S.; Rogers, J. A.; Nuzzo, R. G. Functional nanostructured plasmonic materials. Adv. Mater. 2010, 22, 1102–1110.

    Article  Google Scholar 

  3. Liu, N.; Mesch, M.; Weiss, T.; Hentschel, M.; Giessen, H. Infrared perfect absorber and its application as plasmonic sensor. Nano Lett. 2010, 10, 2342–2348.

    Article  Google Scholar 

  4. Valsecchi, C.; Brolo, A. G. Periodic metallic nanostructures as plasmonic chemical sensors. Langmuir 2013, 29, 5638–5649.

    Article  Google Scholar 

  5. Mayer, K. M.; Hafner, J. H. Localized surface plasmon resonance sensors. Chem. Rev. 2011, 111, 3828–3857.

    Article  Google Scholar 

  6. Szunerits, S.; Boukherroub, R. Sensing using localised surface plasmon resonance sensors. Chem. Commun. 2012, 48, 8999–9010.

    Article  Google Scholar 

  7. Naik, G. V.; Shalaev, V. M.; Boltasseva, A. Alternative plasmonic materials: Beyond gold and silver. Adv. Mater. 2013, 25, 3264–3294.

    Article  Google Scholar 

  8. MacDonald, K. F.; Zheludev, N. I. Active plasmonics: Current status. Laser Photonics Rev. 2010, 4, 562–567.

    Article  Google Scholar 

  9. Sun, Y. H.; Jiang, L.; Zhong, L. B.; Jiang, Y. Y.; Chen, X. D. Towards active plasmonic response devices. Nano Res. 2015, 8, 406–417.

    Article  Google Scholar 

  10. Shir, D.; Ballard, Z. S.; Ozcan, A. Flexible plasmonic sensors. IEEE J. Sel. Top. Quant. Electron. 2016, 22, 4600509.

    Article  Google Scholar 

  11. Liu, X. Y.; Wang, X. Q.; Zha, L. S.; Lin, D. L.; Yang, J. M.; Zhou, J. F.; Zhang, L. Temperature- and pH-tunable plasmonic properties and SERS efficiency of the silver nanoparticles within the dual stimuli-responsive microgels. J. Mater. Chem. C 2014, 2, 7326–7335.

    Article  Google Scholar 

  12. Zhu, X. L.; Shi, L.; Liu, X. H.; Zi, J.; Wang, Z. L. A mechanically tunable plasmonic structure composed of a monolayer array of metal-capped colloidal spheres on an elastomeric substrate. Nano Res. 2010, 3, 807–812.

    Article  Google Scholar 

  13. Wu, H. X.; Wang, P.; He, H. L.; Jin, Y. D. Controlled synthesis of porous Ag/Au bimetallic hollow nanoshells with tunable plasmonic and catalytic properties. Nano Res. 2012, 5, 135–144.

    Article  Google Scholar 

  14. Aksu, S.; Huang, M.; Artar, A.; Yanik, A. A.; Selvarasah, S.; Dokmeci, M. R.; Altug, H. Flexible plasmonics on unconventional and nonplanar substrates. Adv. Mater. 2011, 23, 4422–4430.

    Article  Google Scholar 

  15. Vazquez-Mena, O.; Sannomiya, T.; Tosun, M.; Villanueva, L. G.; Savu, V.; Voros, J.; Brugger, J. High-resolution resistless nanopatterning on polymer and flexible substrates for plasmonic biosensing using stencil masks. ACS Nano 2012, 6, 5474–5481.

    Article  Google Scholar 

  16. Gao, L.; Zhang, Y. H.; Zhang, H.; Doshay, S.; Xie, X.; Luo, H. Y.; Shah, D.; Shi, Y.; Xu, S. Y.; Fang, H. et al. Optics and nonlinear buckling mechanics in large-area, highly stretchable arrays of plasmonic nanostructures. ACS Nano 2015, 9, 5968–5975.

    Article  Google Scholar 

  17. Emani, N. K.; Chung, T.-F.; Ni, X. J.; Kildishev, A. V.; Chen, Y. P.; Boltasseva, A. Electrically tunable damping of plasmonic resonances with graphene. Nano Lett. 2012, 12, 5202–5206.

    Article  Google Scholar 

  18. Kim, J.; Son, H.; Cho, D. J.; Geng, B. S.; Regan, W.; Shi, S. F.; Kim, K.; Zettl, A.; Shen, Y.-R.; Wang, F. Electrical control of optical plasmon resonance with graphene. Nano Lett. 2012, 12, 5598–5602.

    Article  Google Scholar 

  19. Lee, J.; Jung, S.; Chen, P.-Y.; Lu, F.; Demmerle, F.; Boehm, G.; Amann, M.-C.; Alù, A.; Belkin, M. A. Ultrafast electrically tunable polaritonic metasurfaces. Adv. Opt. Mater. 2014, 2, 1057–1063.

    Article  Google Scholar 

  20. Sanz, J. M.; Ortiz, D.; Alcaraz de la Osa, R.; Saiz, J. M.; Gonzaĺez, F.; Brown, A. S.; Losurdo, M.; Everitt, H. O.; Moreno, F. UV plasmonic behavior of various metal nanoparticles in the near- and far-field regimes: Geometry and substrate effects. J. Phys. Chem. C 2013, 117, 19606–19615.

    Article  Google Scholar 

  21. Appusamy, K.; Blair, S.; Nahata, A.; Guruswamy, S. Low-loss magnesium films for plasmonics. Mater. Sci. Eng. B 2014, 181, 77–85.

    Article  Google Scholar 

  22. Appusamy, K.; Swartz, M.; Blair, S.; Nahata, A.; Shumaker-Parry, J. S.; Guruswamy, S. Influence of aluminum content on plasmonic behavior of Mg-Al alloy thin films. Opt. Mater. Express 2016, 6, 3180–3192.

    Article  Google Scholar 

  23. Wu, P. C.; Kim, T.-H.; Suvorova, A.; Giangregorio, M.; Saunders, M.; Bruno, G.; Brown, A. S.; Losurdo, M. GaMg alloy nanoparticles for broadly tunable plasmonics. Small 2011, 7, 751–756.

    Article  Google Scholar 

  24. Wu, P. C; Losurdo, M.; Kim, T.-H.; Garcia-Cueto, B.; Moreno, F.; Bruno, G.; Brown, A. S. Ga-Mg core-shell nanosystem for a novel full color plasmonics. J. Phys. Chem. C 2011, 115, 13571–13576.

    Article  Google Scholar 

  25. Sterl, F.; Strohfeldt, N.; Walter, R.; Griessen, R.; Tittl, A.; Giessen, H. Magnesium as novel material for active plasmonics in the visible wavelength range. Nano Lett. 2015, 15, 7949–7955.

    Article  Google Scholar 

  26. Jeong, H.-H.; Marka, A. G.; Fischer, P. Magnesium plasmonics for UV applications and chiral sensing. Chem. Commun. 2016, 52, 12179–12182.

    Article  Google Scholar 

  27. Wang, Y. S.; Peterson, E. M.; Harris, J. M.; Appusamy, K.; Guruswamy, S.; Blair, S. Magnesium as a novel UV plasmonic material for fluorescence decay rate engineering in free solution. J. Phys. Chem. C 2017, 121, 11650–11657.

    Article  Google Scholar 

  28. Hwang, S.-W.; Tao, H.; Kim, D.-H.; Cheng, H.; Song, J.-K.; Rill, E.; Brenckle, M. A.; Panilaitis, B.; Won, S. M.; Kim, Y.-S. et al. A physically transient form of silicon electronics. Science 2012, 337, 1640–1644.

    Article  Google Scholar 

  29. Yin, L.; Cheng, H. Y.; Mao, S. M.; Haasch, R.; Liu, Y. H.; Xie, X.; Hwang, S.-W.; Jain, H.; Kang, S.-K.; Su, Y. W. et al. Dissolvable metals for transient electronics. Adv. Funct. Mater. 2014, 24, 645–658.

    Article  Google Scholar 

  30. Yin, L.; Huang, X.; Xu, H. X.; Zhang, Y. F.; Lam, J.; Cheng, J. J.; Rogers, J. A. Materials, designs, and operational characteristics for fully biodegradable primary batteries. Adv. Mater. 2014, 26, 3879–3884.

    Article  Google Scholar 

  31. Hwang, S.-W.; Park, G.; Cheng, H. Y.; Song, J.-K.; Kang, S.-K.; Yin, L.; Kim, J.-H.; Omenetto, F. G.; Huang, Y.; Lee, K.-M. et al. 25th anniversary article: Materials for high-performance biodegradable semiconductor devices. Adv. Mater. 2014, 26, 1992–2000.

    Article  Google Scholar 

  32. Stewart, M. E.; Mack, N. H.; Malyarchuk, V.; Soares, J. A. N. T.; Lee, T.-W.; Gray, S. K.; Nuzzo, R. G.; Rogers, J. A. Quantitative multispectral biosensing and 1D imaging using quasi-3D plasmonic crystals. Proc. Natl. Acad. Sci. USA 2006, 103, 17143–17148.

    Article  Google Scholar 

  33. Baca, A. J.; Truong, T. T.; Cambrea, L. R.; Montgomery, J. M.; Gray, S. K.; Abdula, D.; Banks, T. R.; Yao, J. M.; Nuzzo, R. G.; Rogers, J. A. Molded plasmonic crystals for detecting and spatially imaging surface bound species by surface-enhanced Raman scattering. Appl. Phys. Lett. 2009, 94, 243109.

    Article  Google Scholar 

  34. Truong, T. T.; Maria, J.; Yao, J.; Stewart, M. E.; Lee, T.-W.; Gray, S. K.; Nuzzo, R. G.; Rogers, J. A. Nanopost plasmonic crystals. Nanotechnology 2009, 20, 434011.

    Article  Google Scholar 

  35. Yao, J. M.; Le, A.-P.; Schulmerich, M. V.; Maria, J.; Lee, T.-W.; Gray, S. K.; Bhargava, R.; Rogers, J. A.; Nuzzo, R. G. Soft embossing of nanoscale optical and plasmonic structures in glass. ACS Nano 2011, 5, 5763–5774.

    Article  Google Scholar 

  36. Le, A.-P.; Kang, S.; Thompson, L. B.; Rubakhin, S. S.; Sweedler, J. V.; Rogers, J. A.; Nuzzo, R. G. Quantitative reflection imaging of fixed Aplysia californica pedal ganglion neurons on nanostructured plasmonic crystals. J. Phys. Chem. B 2013, 117, 13069–13081.

    Article  Google Scholar 

  37. Chanda, D.; Shigeta, K.; Gupta, S.; Cain, T.; Carlson, A.; Mihi, A.; Baca, A. J.; Bogart, G. R.; Braun, P.; Rogers, J. A. Large-area flexible 3D optical negative index metamaterial formed by nanotransfer printing. Nat. Nanotechnol. 2011, 6, 402–407.

    Article  Google Scholar 

  38. Gao, L.; Shigeta, K.; Vazquez-Guardado, A.; Progler, C. J.; Bogart, G. R.; Rogers, J. A.; Chanda, D. Nanoimprinting techniques for large-area three-dimensional negative index metamaterials with operation in the visible and telecom bands. ACS Nano 2014, 8, 5535–5542.

    Article  Google Scholar 

  39. Gao, L.; Kim, Y.; Vazquez-Guardado, A.; Shigeta, K.; Hartanto, S.; Franklin, D.; Progler, C. J.; Bogart, G. R.; Rogers, J. A.; Chanda, D. Materials selections and growth conditions for large-area, multilayered, visible negative index metamaterials formed by nanotransfer printing. Adv. Opt. Mater. 2014, 2, 256–261.

    Article  Google Scholar 

  40. Li, R.; Cheng, H. Y.; Su, Y. W.; Hwang, S.-W.; Yin, L.; Tao, H.; Brenckle, M. A.; Kim, D.-H.; Omenetto, F. G.; Rogers, J. A. et al. An analytical model of reactive diffusion for transient electronics. Adv. Funct. Mater. 2013, 23, 3106–3114.

    Article  Google Scholar 

  41. Mena-Bravo, A.; Luque de Castro, M. D. Sweat: A sample with limited present applications and promising future in metabolomics. J. Pharmaceut. Biomed. 2014, 90, 139–147.

    Article  Google Scholar 

  42. Jadoon, S.; Karim, S.; Akram, M. R.; Khan, A. K.; Zia, M. A.; Siddiqi, A. R.; Murtaza, G. Recent developments in sweat analysis and its applications. Int. J. Anal. Chem. 2015, 2015, 164974.

    Article  Google Scholar 

  43. Heikenfeld, J. Non-invasive analyte access and sensing through eccrine sweat: Challenges and outlook circa 2016. Electroanalysis 2016, 28, 1242–1249.

    Article  Google Scholar 

  44. Salvo, P.; Di Francesco, F.; Costanzo, D.; Ferrari, C.; Trivella, M. G.; De Rossi, D. A wearable sensor for measuring sweat rate. IEEE Sens. J. 2010, 10, 1557–1558.

    Article  Google Scholar 

  45. Huang, X.; Liu, Y. H.; Chen, K. L.; Shin, W.-J.; Lu, C.-J.; Kong, G.-W.; Patnaik, D.; Lee, S.-H.; Cortes, J. F.; Rogers, J. A. Stretchable, wireless sensors and functional substrates for epidermal characterization of sweat. Small 2014, 10, 3083–3090.

    Article  Google Scholar 

  46. Gao, W.; Emaminejad, S.; Nyein, H. Y. Y.; Challa, S.; Chen, K.; Peck, A.; Fahad, H. M.; Ota, H.; Shiraki, H.; Kiriya, D. et al. Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis. Nature 2016, 529, 509–514.

    Article  Google Scholar 

  47. Choi, J.; Kang, D.; Han, S.; Kim, S. B.; Rogers, J. A. Thin, soft, skin-mounted micro fuidic networks with capillary bursting valves for chrono-sampling of sweat. Adv. Healthcare Mater. 2017, 6, 1601355.

    Article  Google Scholar 

  48. Koh, A.; Kang, D.; Xue, Y. G.; Lee, S.; Pielak, R. M.; Kim, J.; Hwang, T.; Min, S.; Banks, A.; Bastien, P. et al. A soft, wearable microfluidic device for the capture, storage, and colorimetric sensing of sweat. Sci. Transl. Med. 2016, 8, 366ra165.

    Article  Google Scholar 

Download references

Acknowledgements

The author acknowledges support from the Natural Science Foundation of Jiangsu Province (No. BK20150790), the National Natural Science Foundation of China (Nos. 11604151, 61734003, and 61521001), the Fundamental Research Funds for the Central Universities (No. 30917015103).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xinran Wang or Li Gao.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, R., Xie, S., Zhang, L. et al. Soft and transient magnesium plasmonics for environmental and biomedical sensing. Nano Res. 11, 4390–4400 (2018). https://doi.org/10.1007/s12274-018-2028-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-018-2028-6

Keywords

Navigation