Skip to main content
Log in

Scalable synthesis of sub-100 nm hollow carbon nanospheres for energy storage applications

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Sub-100 nm hollow carbon nanospheres with thin shells are highly desirable anode materials for energy storage applications. However, their synthesis remains a great challenge with conventional strategies. In this work, we demonstrate that hollow carbon nanospheres of unprecedentedly small sizes (down to ∼32.5 nm and with thickness of ∼3.9 nm) can be produced on a large scale by a templating process in a unique reverse micelle system. Reverse micelles enable a spatially confined Stöber process that produces uniform silica nanospheres with significantly reduced sizes compared with those from a conventional Stöber process, and a subsequent well-controlled sol–gel coating process with a resorcinol–formaldehyde resin on these silica nanospheres as a precursor of the hollow carbon nanospheres. Owing to the short diffusion length resulting from their hollow structure, as well as their small size and microporosity, these hollow carbon nanospheres show excellent capacity and cycling stability when used as anode materials for lithium/sodium-ion batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aricò, A. S.; Bruce, P.; Scrosati, B.; Tarascon, J.-M.; van Schalkwijk, W. Nanostructured materials for advanced energy conversion and storage devices. Nat. Mater. 2005, 4, 366–377.

    Article  Google Scholar 

  2. Simon, P.; Gogotsi, Y. Materials for electrochemical capacitors. Nat. Mater. 2008, 7, 845–854.

    Article  Google Scholar 

  3. Stoller, M. D.; Park, S.; Zhu, Y. W.; An, J.; Ruoff, R. S. Graphene-based ultracapacitors. Nano Lett. 2008, 8, 3498–3502.

    Article  Google Scholar 

  4. Zhang, L. L.; Zhao, X. S. Carbon-based materials as supercapacitor electrodes. Chem. Soc. Rev. 2009, 38, 2520–2531.

    Article  Google Scholar 

  5. Zhai, Y. P.; Dou, Y. Q.; Zhao, D. Y.; Fulvio, P. F.; Mayes, R. T.; Dai, S. Carbon materials for chemical capacitive energy storage. Adv. Mater. 2011, 23, 4828–4850.

    Article  Google Scholar 

  6. Gong, K. P.; Du, F.; Xia, Z. H.; Durstock, M.; Dai, L. M. Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction. Science 2009, 323, 760–764.

    Article  Google Scholar 

  7. Serp, P.; Corrias, M.; Kalck, P. Carbon nanotubes and nanofibers in catalysis. Appl. Catal. A: Gen. 2003, 253, 337–358.

    Article  Google Scholar 

  8. Zhao, Y.; Nakamura, R.; Kamiya, K.; Nakanishi, S.; Hashimoto, K. Nitrogen-doped carbon nanomaterials as non-metal electrocatalysts for water oxidation. Nat. Commun. 2013, 4, 2390.

    Google Scholar 

  9. Wu, J. S.; Pisula, W.; Müllen, K. Graphenes as potential material for electronics. Chem. Rev. 2007, 107, 718–747.

    Article  Google Scholar 

  10. Brigger, I.; Dubernet, C.; Couvreur, P. Nanoparticles in cancer therapy and diagnosis. Adv. Drug Delivery Rev. 2012, 64, 24–36.

    Article  Google Scholar 

  11. Shi Kam, N. W.; O’Connell, M.; Wisdom, J. A.; Dai, H. Carbon nanotubes as multifunctional biological transporters and near-infrared agents for selective cancer cell destruction. Proc. Natl. Acad. Sci. USA 2005, 102, 11600–11605.

    Article  Google Scholar 

  12. Lijima, S.; Ichihashi, T. Single-shell carbon nanotubes of 1-nm diameter. Nature 1993, 363, 603–605.

    Article  Google Scholar 

  13. Ajayan, P. M. Nanotubes from carbon. Chem. Rev. 1999, 99, 1787–1800.

    Article  Google Scholar 

  14. Baughman, R. H.; Zakhidov, A. A.; de Heer, W. A. Carbon nanotubes—The route toward applications. Science 2002, 297, 787–792.

    Article  Google Scholar 

  15. Li, Z.; Zhang, J. T.; Lou, X. W. Hollow carbon nanofibers filled with MnO2 nanosheets as efficient sulfur hosts for lithium-sulfur batteries. Angew. Chem., Int. Ed. 2015, 54, 12886–12890.

    Article  Google Scholar 

  16. Geim, A. K.; Novoselov, K. S. The rise of graphene. Nat. Mater. 2007, 6, 183–191.

    Article  Google Scholar 

  17. Allen, M. J.; Tung, V. C.; Kaner, R. B. Honeycomb carbon: A review of graphene. Chem. Rev. 2010, 110, 132–145.

    Article  Google Scholar 

  18. Stankovich, S.; Dikin, D. A.; Dommett, G. H. B.; Kohlhaas, K. M.; Zimney, E. J.; Stach, E. A.; Piner, R. D.; Nguyen, S. T.; Ruoff, R. S. Graphene-based composite materials. Nature 2006, 442, 282–286.

    Article  Google Scholar 

  19. Zhu, Y. W.; Murali, S.; Cai, W. W.; Li, X. S.; Suk, J. W.; Potts, J. R.; Ruoff, R. S. Graphene and graphene oxide: Synthesis, properties, and applications. Adv. Mater. 2010, 22, 3906–3924.

    Article  Google Scholar 

  20. Jun, S.; Joo, S. H.; Ryoo, R.; Kruk, M.; Jaroniec, M.; Liu, Z.; Ohsuna, T.; Terasaki, O. Synthesis of new, nanoporous carbon with hexagonally ordered mesostructure. J. Am. Chem. Soc. 2000, 122, 10712–10713.

    Article  Google Scholar 

  21. Meng, Y.; Gu, D.; Zhang, F. Q.; Shi, Y. F.; Yang, H. F.; Li, Z.; Yu, C. Z.; Tu, B.; Zhao, D. Y. Ordered mesoporous polymers and homologous carbon frameworks: Amphiphilic surfactant templating and direct transformation. Angew. Chem., Int. Ed. 2005, 44, 7053–7059.

    Article  Google Scholar 

  22. Lee, J.; Kim, J.; Hyeon, T. Recent progress in the synthesis of porous carbon materials. Adv. Mater. 2006, 18, 2073–2094.

    Article  Google Scholar 

  23. Liu, J.; Yang, T. Y.; Wang, D.-W.; Lu, G. Q.; Zhao, D. Y.; Qiao, S. Z. A facile soft-template synthesis of mesoporous polymeric and carbonaceous nanospheres. Na. Commun. 2013, 4, 2798.

    Google Scholar 

  24. Tang, J.; Liu, J.; Li, C. L.; Li, Y. Q.; Tade, M. O.; Dai, S.; Yamauchi, Y. Synthesis of nitrogen-doped mesoporous carbon spheres with extra-large pores through assembly of diblock copolymer micelles. Angew. Chem., Int. Ed. 2015, 54, 588–593.

    Google Scholar 

  25. Liu, J.; Wickramaratne, N. P.; Qiao, S. Z.; Jaroniec, M. Molecular-based design and emerging applications of nanoporous carbon spheres. Mater. 2015, 14, 763–774.

    Google Scholar 

  26. Liu, J.; Qiao, S. Z.; Liu, H.; Chen, J.; Orpe, A.; Zhao, D. Y.; Lu, G. Q. Extension of the Stöber method to the preparation of monodisperse resorcinol-formaldehyde resin polymer and carbon spheres. Angew. Chem., Int. Ed. 2011, 50, 5947–5951.

    Article  Google Scholar 

  27. White, R. J.; Tauer, K.; Antonietti, M.; Titirici, M. M. Functional hollow carbon nanospheres by latex templating. J. Am. Chem. Soc. 2010, 132, 17360–17363.

    Article  Google Scholar 

  28. Tang, K.; Fu, L. J.; White, R. J.; Yu, L. H.; Titirici, M. M.; Antonietti, M.; Maier, J. Hollow carbon nanospheres with superior rate capability for sodium-based batteries. Adv. Energy Mater. 2012, 2, 873–877.

    Article  Google Scholar 

  29. Chen, A. B.; Yu, Y. F.; Lv, H. J.; Wang, Y. Y.; Shen, S. F.; Hu, Y. Q.; Li, B.; Zhang, Y.; Zhang, J. Thin-walled, mesoporous and nitrogen-doped hollow carbon spheres using ionic liquids as precursors. J. Mater. Chem. A 2013, 1, 1045–1047.

    Article  Google Scholar 

  30. Zheng, G. Y.; Lee, S. W.; Liang, Z.; Lee, H. W.; Yan, K.; Yao, H. B.; Wang, H. T.; Li, W. Y.; Chu, S.; Cui, Y. Interconnected hollow carbon nanospheres for stable lithium metal anodes. Nat. Nanotechnol. 2014, 9, 618–623.

    Article  Google Scholar 

  31. Mezzavilla, S.; Baldizzone, C.; Mayrhofer, K. J. J.; Schüth, F. General method for the synthesis of hollow mesoporous carbon spheres with tunable textural properties. ACS Appl. Mater. Interfaces 2015, 7, 12914–12922.

    Article  Google Scholar 

  32. Zang, J.; An, T. H.; Dong, Y. J.; Fang, X. L.; Zheng, M. S.; Dong, Q. F.; Zheng, N. F. Hollow-in-hollow carbon spheres with hollow foam-like cores for lithium–sulfur batteries. Nano Res. 2015, 8, 2663–2675.

    Article  Google Scholar 

  33. Li, Z.; Zhang, J. T.; Guan, B. Y.; Wang, D.; Liu, L. M.; Lou, X. W. A sulfur host based on titanium monoxide@carbon hollow spheres for advanced lithium-sulfur batteries. Nat. Commun. 2016, 7, 13065.

    Article  Google Scholar 

  34. Joo, J. B.; Lee, I.; Dahl, M.; Moon, G. D.; Zaera, F.; Yin, Y. D. Controllable synthesis of mesoporous TiO2 hollow shells: Toward an efficient photocatalyst. Adv. Funct. Mater. 2013, 23, 4246–4254.

    Article  Google Scholar 

  35. Joo, J. B.; Vu, A.; Zhang, Q.; Dahl, M.; Gu, M. F.; Zaera, F.; Yin, Y. D. A sulfated ZrO2 hollow nanostructure as an acid catalyst in the dehydration of fructose to 5-hydroxymethylfurfural. ChemSusChem 2013, 6, 2001–2008.

    Article  Google Scholar 

  36. Gao, C. B.; Lu, Z. D.; Yin, Y. D. Gram-scale synthesis of silica nanotubes with controlled aspect ratios by templating of nickel-hydrazine complex nanorods. Langmuir 2011, 27, 12201–12208.

    Article  Google Scholar 

  37. Zhao, H. Y.; Wang, D. W.; Gao, C. B.; Liu, H. Y.; Han, L.; Yin, Y. D. Ultrafine platinum/iron oxide nanoconjugates confined in silica nanoshells for highly durable catalytic oxidation. J. Mater. Chem. A 2016, 4, 1366–1372.

    Article  Google Scholar 

  38. Zhang, T. T.; Zhao, H. Y.; He, S. N.; Liu, K.; Liu, H. Y.; Yin, Y. D.; Gao, C. B. Unconventional route to encapsulated ultrasmall gold nanoparticles for high-temperature catalysis. ACS Nano 2014, 8, 7297–7304.

    Article  Google Scholar 

  39. Yu, H. X.; Zhang, Q.; Joo, J. B.; Li, N.; Moon, G. D.; Tao, S. Y.; Wang, L. J.; Yin, Y. D. Porous tubular carbon nanorods with excellent electrochemical properties. J. Mater. Chem. A 2013, 1, 12198–12205.

    Article  Google Scholar 

  40. Wang, J. S.; Shah, Z. H.; Zhang, S. F.; Lu, R. W. Silica-based nanocomposites via reverse microemulsions: Classifications, preparations, and applications. Nanoscale 2014, 6, 4418–4437.

    Article  Google Scholar 

  41. Stöber, W.; Fink, A.; Bohn, E. Controlled growth of monodisperse silica spheres in the micron size range. J. Colloid Interface Sci. 1968, 26, 62–69.

    Article  Google Scholar 

  42. Li, N.; Zhang, Q.; Liu, J.; Joo, J.; Lee, A.; Gan, Y.; Yin, Y. D. Sol-gel coating of inorganic nanostructures with resorcinol-formaldehyde resin. Chem. Commun. 2013, 49, 5135–5137.

    Article  Google Scholar 

  43. Yokoi, T.; Sakamoto, Y.; Terasaki, O.; Kubota, Y.; Okubo, T.; Takashi, T. Periodic arrangement of silica nanospheres assisted by amino acids. J. Am. Chem. Soc. 2006, 128, 13664–13665.

    Article  Google Scholar 

  44. Joo, J. B.; Zhang, Q.; Dahl, M.; Lee, I.; Goebl, J.; Zaera, F.; Yin, Y. D. Control of the nanoscale crystallinity in mesoporous TiO2 shells for enhanced photocatalytic activity. Energy Environ. Sci. 2012, 5, 6321–6327.

    Article  Google Scholar 

  45. Kudin, K. N.; Ozbas, B.; Schniepp, H. C.; Prud’homme, R. K.; Aksay, I. A.; Car, R. Raman spectra of graphite oxide and functionalized graphene sheets. Nano Lett. 2008, 8, 36–41.

    Article  Google Scholar 

  46. Sun, G. L.; Li, X. J.; Qu, Y. D.; Wang, X. H.; Yan, H. H.; Zhang, Y. J. Preparation and characterization of graphite nanosheets from detonation technique. Mater. Lett. 2008, 62, 703–706.

    Article  Google Scholar 

  47. Shen, F.; Zhu, H. L.; Luo, W.; Wan, J. Y.; Zhou, L. H.; Dai, J. Q.; Zhao, B.; Han, X. G.; Fu, K.; Hu, L. B. Chemically crushed wood cellulose fiber towards high-performance sodium-ion batteries. ACS Appl. Mater. Interfaces 2015, 7, 23291–23296.

    Article  Google Scholar 

  48. Fan, Z. Y.; Wang, B. R.; Xi, Y. X.; Xu, X.; Li, M. Y.; Li, J.; Coxon, P.; Cheng, S. D.; Gao, G. X.; Xiao, C. H. et al. A NiCo2O4 nanosheet-mesoporous carbon composite electrode for enhanced reversible lithium storage. Carbon 2016, 99, 633–641.

    Article  Google Scholar 

  49. Fan, Z. Y.; Liang, J.; Yu, W.; Ding, S. J.; Cheng, S. D.; Yang, G.; Wang, Y. L.; Xi, Y. X.; Xi, K.; Kumar, R. V. Ultrathin NiO nanosheets anchored on a highly ordered nanostructured carbon as an enhanced anode material for lithium ion batteries. Nano Energy 2015, 16, 152–162.

    Article  Google Scholar 

  50. Liang, J.; Yu, X. Y.; Zhou, H.; Wu, H. B.; Ding, S. J.; Lou, X. W. Bowl-like SnO2@carbon hollow particles as an advanced anode material for lithium-ion batteries. Angew. Chem., Int. Ed. 2014, 53, 12803–12807.

    Article  Google Scholar 

Download references

Acknowledgements

C. B. G. acknowledges the support from the National Natural Science Foundation of China (Nos. 21671156 and 21301138), the Tang Scholar Program from the Cyrus Tang Foundation, and the start-up fund from Xi’an Jiaotong University. X. G. H acknowledges the programs supported by State Key Laboratory of Electrical Insulation and Power Equipment (No. EIPE17306) and Young Talent Support Plan of Xi’an Jiaotong University. Y. D. Y. acknowledges the support from U.S. Department of Energy (No. DE-SC0002247).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaogang Han or Chuanbo Gao.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, H., Zhang, F., Zhang, S. et al. Scalable synthesis of sub-100 nm hollow carbon nanospheres for energy storage applications. Nano Res. 11, 1822–1833 (2018). https://doi.org/10.1007/s12274-017-1800-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-017-1800-3

Keywords

Navigation