Skip to main content
Log in

Metal-organic framework-derived porous shuttle-like vanadium oxides for sodium-ion battery application

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Vanadium oxides with a layered structure are promising candidates for both lithium-ion batteries and sodium-ion batteries (SIBs). The self-template approach, which involves a transformation from metal-organic frameworks (MOFs) into porous metal oxides, is a novel and effective way to achieve desirable electrochemical performance. In this study, porous shuttle-like vanadium oxides (i.e., V2O5, V2O3/C) were successfully prepared by using MIL-88B (V) as precursors with a specific calcination process. As a proof-of-concept application, the asprepared porous shuttle-like V2O3/C was used as an anode material for SIBs. The porous shuttle-like V2O3/C, which had an inherent layered structure with metallic behavior, exhibited excellent electrochemical properties. Remarkable rate capacities of 417, 247, 202, 176, 164, and 149 mAh·g−1 were achieved at current densities of 50, 100, 200, 500, 1,000, and 2,000 mA·g−1, respectively. Under cycling at 2 A·g−1, the specific discharge capacity reached 181 mAh·g−1, with a low capacity fading rate of 0.032% per cycle after 1,000 cycles. Density functional theory calculation results indicated that Na ions preferred to occupy the interlamination rather than the inside of each layer in the V2O3. Interestingly, the special layered structure with a skeleton of dumbbell-like V–V bonds and metallic behavior was maintained after the insertion of Na ions, which was beneficial for the cycle performance. We consider that the MOF precursor of MIL-88B (V) can be used to synthesize other porous V-based materials for various applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kang, K.; Meng, Y. S.; Bréger, J.; Grey, C. P.; Ceder, G. Electrodes with high power and high capacity for rechargeable lithium batteries. Science 2006, 311, 977–980.

    Article  Google Scholar 

  2. Armand, M.; Tarascon, J. M. Building better batteries. Nature 2008, 451, 652–657.

    Article  Google Scholar 

  3. Tarascon, J. M.; Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 2001, 414, 359–367.

    Article  Google Scholar 

  4. Goodenough, J. B.; Kim, Y. Challenges for rechargeable Li batteries. Chem. Mater. 2010, 22, 587–603.

    Article  Google Scholar 

  5. Yoshino, A. The birth of the lithium-ion battery. Angew. Chem., Int. Ed. 2012, 51, 5798–5800.

    Article  Google Scholar 

  6. Fang, G. Z.; Zhou, J.; Liang, C. W.; Pan, A. Q.; Zhang, C.; Tang, Y.; Tan, X. P.; Liu, J.; Liang, S. Q. MOFs nanosheets derived porous metal oxide-coated three-dimensional substrates for lithium-ion battery applications. Nano Energy 2016, 26, 57–65.

  7. Sun, X. L.; Si, W. P.; Xi, L. X.; Liu, B.; Liu, X. J.; Yan, C. L.; Schmidt, O. G. In situ-formed, amorphous, oxygen-enabled germanium anode with robust cycle life for reversible lithium storage. ChemElectroChem 2015, 2, 737–742.

    Article  Google Scholar 

  8. Sun, X. L.; Si, W. P.; Liu, X. H.; Deng, J. W.; Xi, L. X.; Liu, L. F.; Yan, C. L.; Schmidt, O. G. Multifunctional Ni/NiO hybrid nanomembranes as anode materials for high-rate Li-ion batteries. Nano Energy 2014, 9, 168–175.

    Article  Google Scholar 

  9. Wang, J. Y.; Yang, N. L.; Tang, H. J.; Dong, Z. H.; Jin, Q.; Yang, M.; Kisailus, D.; Zhao, H. J.; Tang, Z. Y.; Wang, D. Accurate control of multishelled Co3O4 hollow microspheres as high-performance anode materials in lithium-ion batteries. Angew. Chem., Int. Ed. 2013, 52, 6417–6420.

    Article  Google Scholar 

  10. Ren, H.; Sun, J. J.; Yu, R. B.; Yang, M.; Gu, L.; Liu, P. R.; Zhao, H. J.; Kisailus, D.; Wang, D. Controllable synthesis of mesostructures from TiO2 hollow to porous nanospheres with superior rate performance for lithium ion batteries. Chem. Sci. 2016, 7, 793–798.

    Article  Google Scholar 

  11. Du, J.; Qi, J.; Wang, D.; Tang, Z. Y. Facile synthesis of Au@TiO2 core-shell hollow spheres for dye-sensitized solar cells with remarkably improved efficiency. Energy Environ. Sci. 2012, 5, 6914–6918.

    Article  Google Scholar 

  12. Qi, J.; Lai, X. Y.; Wang, J. Y.; Tang, H. J.; Ren, H.; Yang, Y.; Jin, Q.; Zhang, L. J.; Yu, R. B.; Ma, G. H. et al. Multishelled hollow micro-/nanostructures. Chem. Soc. Rev. 2015, 44, 6749–6773.

    Article  Google Scholar 

  13. Xu, S. M.; Hessel, C. M.; Ren, H.; Yu, R. B.; Jin, Q.; Yang, M.; Zhao, H. J.; Wang, D. a-Fe2O3 multi-shelled hollow microspheres for lithium ion battery anodes with superior capacity and charge retention. Energy Environ. Sci. 2014, 7, 632–637.

    Article  Google Scholar 

  14. Xu G. Y.; Yuan, J. R.; Tao, X. Y.; Ding, B.; Dou, H.; Yan, X. H.; Xiao, Y.; Zhang, X. G. Absorption mechanism of carbon-nanotube paper-titanium dioxide as a multifunctional barrier material for lithium-sulfur batteries. Nano Res. 2015, 8, 3066–3074.

    Article  Google Scholar 

  15. Dong, Y. F.; Li, S.; Zhao, K. N.; Han, C. H.; Chen,W.; Wang, B. L.; Wang, L.; Xu, B. A.; Wei, Q. L.; Zhang, L. et al. Hierarchical zigzag Na1.25V3O8 nanowires with topotactically encoded superior performance for sodium-ion battery cathodes. Energy Environ. Sci. 2015, 8, 1267–1275.

    Article  Google Scholar 

  16. Ren, W. H.; Zheng, Z. P.; Xu, C.; Niu, C. J.; Wei, Q. L.; An, Q. Y.; Zhao, K. N.; Yan, M. Y.; Qin, M. S.; Mai, L. Q. Self-sacrificed synthesis of three-dimensional Na3V2(PO4)3 sanofiber setwork for high-rate sodium-ion full batteries. Nano Energy 2016, 25, 145–153.

    Article  Google Scholar 

  17. Xu, Y. N.; Wei, Q. L.; Xu, C.; Li, Q. D.; An, Q. Y.; Zhang, P. F.; Sheng, J. Z.; Zhou, L.; Mai, L. Q. Layer-by-layer Na3V2(PO4)3 embedded in reduced graphene oxide as superior rate and ultralong-life sodium-ion battery cathode. Adv. Energy Mater. 2016, 6, 1600389.

    Article  Google Scholar 

  18. Zhang, Y.; Zhao, H. Y.; Du, Y. P. Symmetric full cells assembled by using self-supporting Na3V2(PO4)3 bipolar electrodes for superior sodium energy storage. J. Mater. Chem. A 2016, 4, 7155–7159.

    Article  Google Scholar 

  19. Yuan, S.; Liu, Y. B.; Xu, D.; Ma, D. L.; Wang, S.; Yang, X. H.; Cao, Z. Y.; Zhang, X. B. Pure single-crystalline Na1.1V3O7.9 nanobelts as superior cathode materials for rechargeable sodium-ion batteries. Adv. Sci. 2015, 2, 1400018.

    Article  Google Scholar 

  20. Palomares, V.; Serras, P.; Villaluenga, I.; Hueso, K. B.; Carretero-Gonzá lez, J.; Rojo, T. Na-ion batteries, recent advances and present challenges to become low cost energy storage systems. Energy Environ. Sci. 2012, 5, 5884–5901.

    Article  Google Scholar 

  21. Kim, S. W.; Seo, D. H.; Ma, X. H.; Ceder, G.; Kang, K. Electrode materials for rechargeable sodium-ion batteries: potential alternatives to current lithium-ion batteries. Adv. Energy Mater. 2012, 2, 710–721.

    Article  Google Scholar 

  22. Ong, S. P.; Chevrier, V. L.; Hautier, G.; Jain, A.; Moore, C.; Kim, S.; Ma, X. H.; Ceder, G. Voltage, stability and diffusion barrier differences between sodium-ion and lithium-ion intercalation materials. Energy Environ. Sci. 2011, 4, 3680–3688.

    Article  Google Scholar 

  23. Xu, X.; Yu, D. M.; Zhou, H.; Zhang, L. S.; Xiao, C. H.; Guo, C. W.; Guo, S. W.; Ding, S. J. MoS2 nanosheets grown on amorphous carbon nanotubes for enhanced sodium storage. J. Mater. Chem. A 2016, 4, 4375–4379.

    Article  Google Scholar 

  24. Cheng, F. Y.; Chen, J. Transition metal vanadium oxides and vanadate materials for lithium batteries. J. Mater. Chem. 2011, 21, 9841–9848.

    Article  Google Scholar 

  25. Wu, C. Z.; Xie, Y. Promising vanadium oxide and hydroxide nanostructures: from energy storage to energy saving. Energy Environ. Sci. 2010, 3, 1191–1206.

    Article  Google Scholar 

  26. Chernova, N. A.; Roppolo, M.; Dillon, A. C.; Whittingham, M. Stanley. Layered vanadium and molybdenum oxides: batteries and electrochromics. J. Mater. Chemistry 2009, 19, 2526–2552.

    Article  Google Scholar 

  27. Wang, Y.; Chao, G. Z. Synthesis and enhanced intercalation properties of nanostructured vanadium oxides. Chem. Mater. 2006, 18, 2787–2804.

    Article  Google Scholar 

  28. Raju, V.; Rains, J.; Gates, C.; Luo, W.; Wang, X. F.; Stickle, W. F.; Stucky, G. D.; Ji, X. L. Superior cathode of sodium-ion batteries: Orthorhombic V2O5 nanoparticles generated in nanoporous carbon by ambient hydrolysis deposition. Nano Lett. 2014, 14, 4119–4124.

    Article  Google Scholar 

  29. Zhang, P. F.; Zhao, L. Z.; An, Q. Y.; Wei, Q. L.; Zhou, L.; Wei, X. J.; Sheng, J. Z.; Mai, L. Q. A high-rate V2O5 hollow microclew cathode for an all-vanadium-based lithium-ion full cell. Small 2016, 12, 1082–1090.

    Article  Google Scholar 

  30. Su, D. W.; Wang, G. X. Single-crystalline bilayered V2O5 nanobelts for high-capacity sodium–ion batteries. ACS Nano 2013, 7, 11218–11226.

    Article  Google Scholar 

  31. Xia, X. H.; Chao, D. L.; Zhang, Y. Q.; Zhan, J. Y.; Zhong, Y.; Wang, X. L.; Wang, Y. D.; Shen, Z. X.; Tu, J. P.; Fan, H. J. Generic synthesis of carbon nanotube branches on metal oxide arrays exhibiting stable high-rate and long-cycle sodium-ion storage. Small 2016, 12, 3048–3058.

    Article  Google Scholar 

  32. Niu, C. J.; Huang, M.; Wang, P. Y.; Meng, J. S.; Liu, X.; Wang, X. P.; Zhao, K. N.; Yu, Y.; Wu, Y. Z.; Lin, C. et al. Carbon-supported and nanosheet-assembled vanadium oxide microspheres for stable lithium-ion battery anodes. Nano Res. 2015, 9, 128–138.

    Article  Google Scholar 

  33. Jiang, L.; Qu, Y.; Ren, Z. Y.; Yu, P.; Zhao, D. D.; Zhou, W.; Wang, L.; Fu, H. G. In situ carbon-coated yolk-shell V2O3 microspheres for lithium-ion batteries. ACS Appl. Mater. Interfaces 2015, 7, 1595–1601.

    Article  Google Scholar 

  34. Wang J. Y.; Tang, H. J.; Zhang, L. J.; Ren, H.; Yu, R. B.; Jin, Q.; Qi, J.; Mao, D.; Yang, M.; Wang, Y. et al. Multishelled metal oxides prepared via an anion-adsorption mechanism for lithium-ion batteries. Nat. Energy 2016, 1, 16050.

    Article  Google Scholar 

  35. Chao, D. L.; Xia, X. H.; Liu, J. L.; Fan, Z. X.; Ng, C. F.; Lin, J. Y.; Zhang, H.; Shen, Z. X.; Fan, H. J. A V2O5/ conductive-polymer core/shell nanobelt array on threedimensional graphite foam: a high-rate, ultrastable, and freestanding cathode for lithium-ion batteries. Adv. Mater. 2014, 26, 5794–5800.

    Article  Google Scholar 

  36. Zhai, T. Y.; Liu, H. M.; Li, H. Q.; Fang, X. S.; Liao, M. Y.; Li, L.; Zhou, H. S.; Koide, Y.; Bando, Y.; Golberg, D. Centimeter-long V2O5 nanowires: From synthesis to fieldemission, electrochemical, electrical transport, and photoconductive properties. Adv. Mater. 2010, 22, 2547–2552.

    Article  Google Scholar 

  37. Li, Y. W.; Yao, J. H.; Uchaker, E.; Yang, J. W.; Huang, Y. X.; Zhang, M.; Cao, G. Z. Leaf-like V2O5 nanosheets fabricated by a facile green approach as high energy cathode material for lithium-ion batteries. Adv. Energy Mater. 2013, 3, 1171–1175.

    Article  Google Scholar 

  38. Wu, H. B.; Pan, A. Q.; Hng, H. H.; Lou, X. W. Templateassisted formation of rattle-type V2O5 hollow microspheres with enhanced lithium storage properties. Adv. Funct. Mater. 2013, 23, 5669–5674.

    Article  Google Scholar 

  39. Pan, A. Q.; Wu, H. B.; Yu, L.; Lou, X. W. Template-free synthesis of VO2 hollow microspheres with various interiors and their conversion into V2O5 for lithium-ion batteries. Angew. Chem., Int. Ed. 2013, 125, 2282–2286.

    Article  Google Scholar 

  40. Parija, A.; Liang, Y. F.; Andrews, J. L.; De Jesus, L. R.; Prendergast, D.; Banerjee, S. Topochemically de-intercalated phases of V2O5 as cathode materials for multivalent intercalation batteries: A first-principles evaluation. Chem. Mater. 2016, 28, 5611–5620

    Article  Google Scholar 

  41. Xu, H. T.; Chen, J. D.; Zhang, H. J.; Zhang, Y.; Li, W. X.; Wang, Y. Fabricating SiO2-coated V2O5 nanoflake arrays for high-performance lithium-ion batteries with enhanced cycling capability. J. Mater. Chem. A 2016, 4, 4098–4106.

    Article  Google Scholar 

  42. An, Q. Y.; Zhang, P. F.; Wei, Q. L.; He, L.; Xiong, F. Y.; Sheng, J. Z.; Wang, Q. Q.; Mai, L. Q. Top-down fabrication of three-dimensional porous V2O5 hierarchical microplates with tunable porosity for improved lithium battery performance. J. Mater. Chem. A 2014, 2, 3297–3302.

    Article  Google Scholar 

  43. Su, D. W.; Dou, S. X.; Wang, G. X. Hierarchical orthorhombic V2O5 hollow nanospheres as high performance cathode materials for sodium-ion bbatteries. J. Mater. Chem. A 2014, 2, 11185–11194.

    Article  Google Scholar 

  44. Mai, L. Q.; Dong, F.; Xu, X.; Luo, Y. Z.; An, Q. Y.; Zhao, Y. L.; Pan, J.; Yang, J. N. Cucumber-like V2O5/poly (3,4-ethylenedioxythiophene)&MnO2 nanowires with enhanced electrochemical cyclability. Nano Lett. 2013, 13, 740–745.

    Article  Google Scholar 

  45. Shi, Y.; Zhang, Z. J.; Wexler, D.; Chou, S. L.; Gao, J.; Abruñ a, H. D.; Li, H. J.; Liu, H. K.; Wu, Y. P.; Wang, J. Z. Facile synthesis of porous V2O3/C composites as lithium storage material with enhanced capacity and good rate capability. J. Power Sources 2015, 275, 392–398.

    Article  Google Scholar 

  46. Jiang, H.; Jia, G. Q.; Hu, Y. J.; Cheng, Q. L.; Fu, Y.; Li, C. Z. Ultrafine V2O3 nanowire embedded in carbon hybrids with enhanced lithium storage capability. Ind. Eng. Chem. Res. 2015, 54, 2960–2965.

    Article  Google Scholar 

  47. Li, H. Y.; Jiao, K.; Wang, L.; Wei, C.; Li, X. L.; Xie, B. Micelle anchored in situ synthesis of V2O3 nanoflakes@C composites for supercapacitors. J. Mater. Chem. A 2014, 2, 18806–18815.

    Article  Google Scholar 

  48. Zhang, Y. F.; Fan, M. J.; Hu, L.; Wu, W. B.; Zhang, J. C.; Liu, X. H.; Zhong, Y. L.; Huang, C. Fabrication of V2O3/C core-shell structured composite and vc nanobelts by the thermal treatment of VO2/C composite. Appl. Surf. Sci. 2012, 258, 9650–9655.

    Article  Google Scholar 

  49. Wang, Y.; Zhang, H. J.; Admar, A. S.; Luo, J. Z.; Wong, C. C.; Borgna, A.; Lin, J. Y. Improved cyclability of lithium-ion battery anode using encapsulated V2O3 nanostructures in well-graphitized carbon fiber. RSC Adv. 2012, 2, 5748–5753.

    Article  Google Scholar 

  50. Sun, Y. F.; Jiang, S. S.; Bi, W. T.; Wu, C. Z.; Xie, Y. Highly ordered lamellar V2O3-based hybrid nanorods towards superior aqueous lithium-ion battery performance. J. Power Sources 2011, 196, 8644–8650.

    Article  Google Scholar 

  51. Wu, C. Z.; Feng, F.; Xie, Y. Design of vanadium oxide structures with controllable electrical properties for energy applications. Chem. Soc. Rev. 2013, 42, 5157–5183.

    Article  Google Scholar 

  52. Taylor, J. W.; Smith, T. J.; Andersen, K. H.; Capellmann, H.; Kremer, R. K.; Simon, A.; Schä rpf, O.; Neumann, K. U.; Ziebeck, K. R. A. Spin-spin correlations in the insulating and metallic phases of the mott system V2O3. Eur. Phys. J. B 1999, 12, 199–207.

    Article  Google Scholar 

  53. Xu, Y. N.; Chung, S. Y.; Bloking, J. T.; Chiang, Y. M.; Ching, W. Y. Electronic structure and electrical conductivity of undoped LiFePO4. Electrochem. Solid State Lett. 2004, 7, A131–A134.

    Article  Google Scholar 

  54. Shi, S. Q.; Liu, L. J.; Ouyang, C. Y.; Wang, D. S.; Wang, Z. X.; Chen, L. Q.; Huang, X. J. Enhancement of electronic conductivity of LiFePO4 by Cr doping and its identification by first-principles calculations. Phys. Rev. B 2003, 68, 195108.

    Article  Google Scholar 

  55. Xu, J.; Chen, G. Effects of doping on the electronic properties of LiFePO4: A first-principles investigation. Phys. B Condens. Matter 2010, 405, 803–807.

    Article  Google Scholar 

  56. Zhou, F.; Kang, K.; Maxisch, T.; Ceder, G.; Morgan, D. The electronic structure and band gap of LiFePO4 and LiMnPO4. Solid State Commun. 2004, 132, 181–186.

    Article  Google Scholar 

  57. Zheng, C. M.; Zhang, X. M.; He, S.; Fu, Q.; Lei, D. M. Preparation and characterization of spherical V2O3 nanopowder. J. Solid State Chem. 2003, 170, 221–226.

    Article  Google Scholar 

  58. Müller, C.; Nateprov, A. A.; Obermeier, G.; Klemm, M.; Tidecks, R.; Wixforth, A.; Horn S. Surface acoustic wave investigations of the metal-to-insulator transition of V2O3 thin films on lithium niobate. J. Appl. Phys. 2005, 98, 084111.

    Article  Google Scholar 

  59. Liu, N.; Yao, Y.; Cha, J. J.; McDowell, M. T.; Han, Y.; Cui, Y. Functionalization of silicon nanowire surfaces with metal-organic frameworks. Nano Res. 2012, 5, 109–116.

    Article  Google Scholar 

  60. Deng, H. X.; Grunder, S.; Cordova, K. E.; Valente, C.; Furukawa, H.; Hmadeh, M.; Gá ndara, F.; Whalley, A. C.; Liu, Z.; Asahina, S. et al. Large-pore apertures in a series of metal-organic frameworks. Science 2012, 336, 1018–1023.

    Article  Google Scholar 

  61. Hayashi, H.; Côté, A. P.; Furukawa, H.; O’Keeffe, M.; Yaghi, O. M. Zeolite a imidazolate frameworks. Nat. Mater. 2007, 6, 501–506.

    Article  Google Scholar 

  62. Lu, W. G.; Wei, Z. W.; Gu, Z. Y.; Liu, T. F.; Park, J.; Park, J.; Tian, J.; Zhang, M. W.; Zhang, Q.; Gentle III, T. et al. Tuning the structure and function of metal-organic frameworks via linker design. Chem. Soc. Rev. 2014, 43, 5561–5593.

    Article  Google Scholar 

  63. Stock, N.; Biswas, S. Synthesis of metal-organic frameworks (MOFs): Routes to various MOF topologies, morphologies, and composites. Chem. Rev. 2012, 112, 933–969.

    Article  Google Scholar 

  64. Xu, G. Y.; Ding, B.; Shen, L. F.; Nie, P.; Han, J. P.; Zhang, X. G. Sulfur embedded in metal organic framework-derived hierarchically porous carbon nanoplates for high performance lithium-sulfur battery. J. Mater. Chem. A 2013, 1, 4490–4496.

    Article  Google Scholar 

  65. Zhang, L.; Wu, H. B.; Lou, X. W. Metal-organicframeworks- derived general formation of hollow structures with high complexity. J. Am. Chem. Soc. 2013, 135, 10664–10672.

    Article  Google Scholar 

  66. Yu, X. Y.; Yu, L.; Wu, H. B.; Lou, X. W. Formation of nickel sulfide nanoframes from metal-organic frameworks with enhanced pseudocapacitive and electrocatalytic properties. Angew. Chem., Int. Ed. 2015, 54, 5331–5335.

    Article  Google Scholar 

  67. Guo, W. X.; Sun, W. W.; Wang, Y. Multilayer CuO@NiO hollow spheres: Microwave-assisted metal-organic-framework derivation and highly reversible structure-matched stepwise lithium storage. ACS Nano 2015, 9, 11462–11471.

    Article  Google Scholar 

  68. Huang, G.; Zhang, F. F.; Du, X. C.; Qin, Y. L.; Yin, D. M.; Wang, L. M. Metal organic frameworks route to in situ insertion of multiwalled carbon nanotubes in Co3O4 polyhedra as anode materials for lithium-ion batteries. Nano 2015, 9, 1592–1599.

    Google Scholar 

  69. Cao, X. H.; Zheng, B.; Shi, W. H.; Yang, J.; Fan, Z. X.; Luo, Z. M.; Rui, X. H.; Chen, B.; Yan, Q. Y.; Zhang, H. Reduced graphene oxide-wrapped MoO3 composites prepared by using metal-organic frameworks as precursor for allsolid- state flexible supercapacitors. Adv. Mater. 2015, 27, 4695–4701.

    Article  Google Scholar 

  70. Zheng, J. M.; Tian, J.; Wu, D. X.; Gu, M.; Xu, W.; Wang, C. M.; Gao, F.; Engelhard, M. H.; Zhang, J. G.; Liu, J. et al. Lewis acid–base interactions between polysulfides and metal organic framework in lithium sulfur batteries. Nano Lett. 2014, 14, 2345–2352.

    Article  Google Scholar 

  71. Wu, R. B.; Qian, X. K.; Rui, X. H.; Liu, H.; Yadian, B. L.; Zhou, K.; Wei, J.; Yan, Q. Y.; Feng, X. Q.; Long, Y. et al. Zeolitic imidazolate framework 67-derived high symmetric porous Co3O4 hollow dodecahedra with highly enhanced lithium storage capability. Small 2014, 10, 1932–1938.

    Article  Google Scholar 

  72. Zhang, L.; Wu, H. B.; Madhavi, S.; Hng, H. H.; Lou, X. W. Formation of Fe2O3 microboxes with hierarchical shell structures from metal-organic frameworks and their lithium storage properties. J. Am. Chem. Soc. 2012, 134, 17388–17391.

    Article  Google Scholar 

  73. Wu, R. B.; Qian, X. K.; Yu, F.; Liu, H.; Zhou, K.; Wei, J.; Huang, Y. Z. MOF-templated formation of porous CuO hollow octahedra for lithium-ion battery anode materials. J. Mater. Chem. A 2013, 1, 11126–11129.

    Google Scholar 

  74. Zhang, Y. Z.; Wang, Y.; Xie, Y. L.; Cheng, T.; Lai, W. Y.; Pang, H.; Huang, W. Porous hollow Co3O4 with rhombic dodecahedral structures for high-performance supercapacitors. Nanoscale 2014, 6, 14354–14359.

    Article  Google Scholar 

  75. Ullah, S.; Khan, I. A.; Choucair, M.; Badshah, A.; Khan, I.; Nadeem, M. A. A novel Cr2O3-carbon composite as a high performance pseudo-capacitor electrode material. Electrochim. Acta 2015, 171, 142–149.

    Google Scholar 

  76. Qu, B. H.; Ma, C. Z.; Ji, G.; Xu, C. H.; Xu, J.; Meng, Y. S.; Wang, T. H.; Lee, J. Y. Layered SnS2-reduced graphene oxide composite-a high-capacity, high-rate, and long-cycle life sodium-ion battery anode material. Adv. Mater. 2014, 26, 3854–3859.

    Article  Google Scholar 

  77. Zhang, Y. D.; Zhu, P. Y.; Huang, L. L.; Xie, J.; Zhang, S. C.; Cao, G. S.; Zhao, X. B. Few-layered SnS2 on few-layered reduced graphene oxide as Na-ion battery anode with ultralong cycle life and superior rate capability. Adv. Funct. Mater. 2015, 25, 481–489.

    Article  Google Scholar 

  78. Lu, Y. Y.; Zhao, Q., Zhang, N.; Lei, K. X.; Li, F. J.; Chen, J. Facile spraying synthesis and high-performance sodium storage of mesoporous MoS2/C microspheres. Adv. Funct. Mater. 2016, 26, 911–918.

    Article  Google Scholar 

  79. Xu, D. F.; Chen, C. J.; Xie, J.; Zhang, B.; Miao, L.; Cai, J.; Huang, Y. H.; Zhang, L. N. A hierarchical N/S-codoped carbon anode fabricated facilely from cellulose/polyaniline microspheres for high-performance sodium-ion batteries. Adv. Energy Mater. 2016, 6, 1501929.

    Article  Google Scholar 

  80. Carson, F.; Su, J.; Platero-Prats, A. E.; Wan, W.; Yun, Y. F.; Samain, L.; Zou, X. D. Framework isomerism in vanadium metal-organic frameworks: MIL-88B(V) and MIL-101(V). Cryst. Growth Des. 2013, 13, 5036–5044.

    Article  Google Scholar 

  81. Jiang, Y.; Yang, Z. Z.; Li, W. H.; Zeng, L. C.; Pan, F. S.; Wang, M.; Wei, X.; Hu, G. T.; Gu, L.; Yu, Y. Nanoconfined carbon-coated Na3V2(PO4)3 particles in mesoporous carbon enabling ultralong cycle life for sodium-ion batteries. Adv. Energy Mater. 2015, 5, 1402104.

    Article  Google Scholar 

  82. Li, Q. D.; Wei, Q. L.; Sheng, J. Z.; Yan, M. Y.; Zhou, L.; Luo, W.; Sun, R. M.; Mai, L. Q. Mesoporous Li3VO4/C submicron-ellipsoids supported on reduced graphene oxide as practical anode for high-power lithium-ion batteries. Adv. Sci. 2015, 2, 1500284.

    Article  Google Scholar 

  83. Moulder, J. F.; Stickle, W. F.; Sobol, P. E.; Bomben, K. D. Handbook of X-ray Photoelectron Spectroscopy; Chastain, J.; King, R. C. Jr, Eds.; Perkin–Elmer Corporation: Eden Prairie, MN,USA, 1992.

  84. Tang, W.; Peng, C. X.; Nai, C. T.; Su, J.; Liu, Y. P.; Reddy, M. V. V.; Lin, M.; Loh, K. P. Ultrahigh capacity due to multi-electron conversion reaction in reduced graphene oxide-wrapped MoO2 porous nanobelts. Small 2015, 11, 2446–2453.

    Article  Google Scholar 

  85. Zhang, Y. F.; Fan, M. J.; Liu, X. H.; Huang, C.; Li, H. B. Beltlike V2O3@C core-shell-structured composite: design, preparation, characterization, phase transition, and improvement of electrochemical properties of V2O3. Eur. J. Inorg. Chem. 2012, 2012, 1650–1659.

    Article  Google Scholar 

  86. Jiang, H.; Ren, D. Y.; Wang, H. F.; Hu, Y. J.; Guo, S. J.; Yuan, H. Y.; Hu, P. J.; Zhang, L.; Li, C. Z. 2D monolayer MoS2-carbon interoverlapped superstructure: Engineering ideal atomic interface for lithium ion storage. Adv. Mater. 2015, 27, 3687–3695.

    Google Scholar 

  87. Xie, X. Q.; Ao, Z. M.; Su, D. W.; Zhang, J. Q.; Wang, G. X. MoS2/graphene composite anodes with enhanced performance for sodium-ion batteries: The role of the two-dimensional heterointerface. Adv. Funct. Mater. 2015, 2, 1393–1403.

    Article  Google Scholar 

  88. Zhang, Y. F.; Pan, A. Q.; Wang, Y. P.; Wei, W. F.; Su, Y. H.; Hu, J. M.; Cao, G. Z.; Liang, S. Q. Dodecahedron-shaped porous vanadium oxide and carbon composite for high-rate lithium ion batteries. ACS Appl. Mater. Interfaces 2016, 8, 17303–17311.

    Article  Google Scholar 

  89. Zhang, W.; Wu, Z. Y.; Jiang, H. L.; Yu, S. H. nanowiredirected templating synthesis of metal-organic framework nanofibers and their derived porous doped carbon nanofibers for enhanced electrocatalysis. J. Am. Chem. Soc. 2014, 136, 14385–14388.

    Article  Google Scholar 

  90. Tang, J.; Salunkhe, R. R.; Liu, J.; Torad, N. L.; Imura, M.; Furukawa, S.; Yamauchi, Y. Thermal conversion of core-shell metal-organic frameworks: A new method for selectively functionalized nanoporous hybrid carbon. J. Am. Chem. Soc. 2015, 137, 1572–1580.

    Article  Google Scholar 

  91. Chen, Y. Z.; Wang, C. M.; Wu, Z. Y.; Xiong, Y. J.; Xu, Q.; Yu, S. H.; Jiang, H. L. From bimetallic metal-organic framework to porous carbon: high surface area and multicomponent active dopants for excellent electrocatalysis. Adv. Mater. 2015, 27, 5010–5016.

    Article  Google Scholar 

  92. Enjalbert, R.; Galy, J. A refinement of the structure of V2O5. Acta Crystallogr. C 1986, 42, 1467–1469.

    Google Scholar 

  93. Xiao, J.; Wang, X. J.; Yang, X. Q.; Xun, S. D.; Liu, G.; Koech, P. K.; Liu, J.; Lemmon, J. P. Electrochemically induced high capacity displacement reaction of PEO/MoS2/graphene nanocomposites with lithium. Adv. Funct. Mater. 2011, 21, 2840–2846.

    Article  Google Scholar 

  94. Li, D. D.; Zhang, L.; Chen, H. B.; Wang, J.; Ding, L. X.; Wang, S. Q.; Ashman, P. J.; Wang, H. H. Graphene-based nitrogen-doped carbon sandwich nanosheets: A new capacitive process controlled anode material for high-performance sodium-ion batteries. J. Mater. Chem. A 2016, 4, 8630–8635.

    Article  Google Scholar 

  95. Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

    Article  Google Scholar 

  96. Perdew, J. P.; Chevary, J. A.; Vosko, S. H.; Jackson, K. A.; Pederson, M. R.; Singh, D. J.; Fiolhais, C. Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B 1992, 46, 6671–6687.

    Article  Google Scholar 

  97. Blöchl, P. E.; Parrinello, M. Adiabaticity in first-principles molecular dynamics. Phys. Rev. B 1992, 45, 9413–9416.

    Article  Google Scholar 

  98. Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

    Article  Google Scholar 

  99. Methfessel, M.; Paxton, A. T. High-precision sampling for brillouin-zone integration in metals. Phys. Rev. B 1989, 40, 3616–3621.

    Article  Google Scholar 

  100. Monkhorst, H. J.; Pack, J. D. Special points for brillouinzone integrations. Phys. Rev. B 1976, 13, 5188–5192.

    Article  Google Scholar 

  101. Liao, Y. H.; Park, K. S.; Xiao, P. H.; Henkelman, G.; Li, W. S.; Goodenough, J. B. Sodium intercalation behavior of layered NaxNbS2 (0 = x = 1). Chem. Mater. 2013, 25, 1699–1705.

    Article  Google Scholar 

  102. Hu, J. P.; Xu, B.; Yang, S. A.; Guan, S.; Ouyang, C. Y.; Yao, Y. G. 2D electrides as promising anode materials for Na-ion batteries from first-principles study. ACS Appl. Mater. Interfaces 2015, 7, 24016–24022.

    Google Scholar 

  103. Tang, W.; Sanville, E.; Henkelman, G. A grid-based bader analysis algorithm without lattice Bias. J. Phys. Condens. Matter 2009, 21, 084204.

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (NSFC) (Nos. 51572299 and 51374255), the National High-tech R&D Program of China (863 Program) (No. 2013AA110106), and the Fundamental Research Funds for the Central Universities of Central South University (No. 2017zzts004).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jiang Zhou, Anqiang Pan or Shuquan Liang.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, Y., Fang, G., Zhou, J. et al. Metal-organic framework-derived porous shuttle-like vanadium oxides for sodium-ion battery application. Nano Res. 11, 449–463 (2018). https://doi.org/10.1007/s12274-017-1653-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-017-1653-9

Keywords

Navigation