Skip to main content
Log in

Layered material GeSe and vertical GeSe/MoS2 p-n heterojunctions

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Group-IV monochalcogenides are emerging as a new class of layered materials beyond graphene, transition metal dichalcogenides (TMDCs), and black phosphorus (BP). In this paper, we report experimental and theoretical investigations of the band structure and transport properties of GeSe and its heterostructures. We find that GeSe exhibits a markedly anisotropic electronic transport, with maximum conductance along the armchair direction. Density functional theory calculations reveal that the effective mass is 2.7 times larger along the zigzag direction than the armchair direction; this mass anisotropy explains the observed anisotropic conductance. The crystallographic orientation of GeSe is confirmed by angleresolved polarized Raman measurements, which are further supported by calculated Raman tensors for the orthorhombic structure. Novel GeSe/MoS2 p-n heterojunctions are fabricated, combining the natural p-type doping in GeSe and n-type doping in MoS2. The temperature dependence of the measured junction current reveals that GeSe and MoS2 have a type-II band alignment with a conduction band offset of ∼0.234 eV. The anisotropic conductance of GeSe may enable the development of new electronic and optoelectronic devices, such as high-efficiency thermoelectric devices and plasmonic devices with resonance frequency continuously tunable through light polarization direction. The unique GeSe/MoS2 p-n junctions with type-II alignment may become essential building blocks of vertical tunneling field-effect transistors for low-power applications. The novel p-type layered material GeSe can also be combined with n-type TMDCs to form heterogeneous complementary metal oxide semiconductor (CMOS) circuits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhao, L. D.; Lo, S. H.; Zhang, Y. S.; Sun, H.; Tan, G. J.; Uher, C.; Wolverton, C.; Dravid, V. P.; Kanatzidis, M. G. Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals. Nature 2014, 508, 373–377.

    Article  Google Scholar 

  2. Ding, G. Q.; Gao, G. Y.; Yao, K. L. High-efficient thermoelectric materials: The case of orthorhombic IV-VI compounds. Sci. Rep. 2015, 5, 9567.

    Article  Google Scholar 

  3. Chattopadhyay, T.; Pannetier, J.; Von Schnering, H. G. Neutron diffraction study of the structural phase transition in SnS and SnSe. J. Phys. Chem. Solids 1986, 47, 879–885.

    Article  Google Scholar 

  4. Vaughn, D. D., II.; Patel, R. J.; Hickner, M. A.; Schaak, R. E. Single-crystal colloidal nanosheets of GeS and GeSe. J. Am. Chem. Soc. 2010, 132, 15170–15172.

    Article  Google Scholar 

  5. Singh A. K.; Hennig, R. G. Computational prediction of two-dimensional group-IV mono-chalcogenides. Appl. Phys. Lett. 2014, 105, 042103.

    Article  Google Scholar 

  6. Taniguchi, M.; Johnson, R. L.; Ghijsen, J.; Cardona, M. Core excitons and conduction-band structures in orthorhombic GeS, GeSe, SnS, and SnSe single crystals. Phys. Rev. B 1990, 42, 3634–3643.

    Article  Google Scholar 

  7. Makinistian, L.; Albanesi, E. A. Ab initio calculations of the electronic and optical properties of germanium selenide. J. Phys.: Condens. Matter 2007, 19, 186211.

    Google Scholar 

  8. Gomes, L. C.; Trevisanutto, P. E.; Carvalho, A.; Rodin, A. S.; Neto, A. H. C. Strongly bound Mott-Wannier excitons in GeS and GeSe monolayers. Phys. Rev. B 2016, 94, 155428.

    Article  Google Scholar 

  9. Asanabe, S.; Okazaki, A. Electrical properties of germanium selenide GeSe. J. Phys. Soc. Jpn. 1960, 15, 989–997.

    Article  Google Scholar 

  10. Mehboudi, M.; Fregoso, B. M.; Yang, Y. R.; Zhu, W. J.; van der Zande, A.; Ferrer, J.; Bellaiche, L.; Kumar, P.; Barraza-Lopez, S. Structural phase transition and material properties of few-layer monochalcogenides. Phys. Rev. Lett. 2016, 117, 246802.

    Article  Google Scholar 

  11. Mukherjee, B.; Cai, Y. Q.; Tan, H. R.; Feng, Y. P.; Tok, E. S.; Sow, C. H. NIR schottky photodetectors based on individual single-crystalline GeSe nanosheet. ACS Appl. Mater. Interfaces 2013, 5, 9594–9604.

    Article  Google Scholar 

  12. Yoon, S. M.; Song, H. J.; Choi, H. C. p-type semiconducting GeSe combs by a vaporization-condensation-recrystallization (VCR) process. Adv. Mater. 2010, 22, 2164–2167.

    Article  Google Scholar 

  13. Mehboudi, M.; Dorio, A. M.; Zhu, W. J.; van der Zande, A.; Churchill, H. O. H.; Pacheco-Sanjuan, A. A.; Harriss, E. O.; Kumar, P.; Barraza-Lopez, S. Two-dimensional disorder in black phosphorus and monochalcogenide monolayers. Nano Lett. 2016, 16, 1704–1712.

    Article  Google Scholar 

  14. Gomes, L. C.; Carvalho, A. Phosphorene analogues: Isoelectronic two-dimensional group-IV monochalcogenides with orthorhombic structure. Phys. Rev. B 2015, 92, 085406.

    Article  Google Scholar 

  15. Takagi, S.; Toriumi, A.; Iwase, M.; Tango, H. On the universality of inversion layer mobility in Si MOSFET’s: Part II-effects of surface orientation. IEEE Trans. Electron Dev. 1994, 41, 2363–2368.

    Article  Google Scholar 

  16. Bruzzone, S.; Fiori, G. Ab-initio simulations of deformation potentials and electron mobility in chemically modified graphene and two-dimensional hexagonal boron-nitride. Appl. Phys. Lett. 2011, 99, 222108.

    Article  Google Scholar 

  17. Fei, R. X.; Yang, L. Strain-engineering the anisotropic electrical conductance of few-layer black phosphorus. Nano Lett. 2014, 14, 2884–2889.

    Article  Google Scholar 

  18. Ling, X.; Wang, H.; Huang, S. X.; Xia, F. N.; Dresselhaus, M. S. The renaissance of black phosphorus. Proc. Natl. Acad. Sci. USA 2015, 112, 4523–4530.

    Article  Google Scholar 

  19. Low, T.; Roldán, R.; Wang, H.; Xia, F. N.; Avouris, P.; Moreno, L. M.; Guinea, F. Plasmons and screening in monolayer and multilayer black phosphorus. Phys. Rev. Lett. 2014, 113, 106802.

    Article  Google Scholar 

  20. Xia, F. N.; Wang, H.; Jia, Y. C. Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics. Nat. Commun. 2014, 5, 4458.

    Google Scholar 

  21. Fei, R. X.; Faghaninia, A.; Soklaski, R.; Yan, J. A.; Lo, C.; Yang, L. Enhanced thermoelectric efficiency via orthogonal electrical and thermal conductances in phosphorene. Nano Lett. 2014, 14, 6393–6399.

    Article  Google Scholar 

  22. Chandrasekhar, H. R.; Zwick, U. Raman scattering and infrared reflectivity in GeSe. Solid State Commun. 1976, 18, 1509–1513.

    Article  Google Scholar 

  23. Fukunaga, T.; Sugai, S.; Kinosada, T.; Murase, K. Observation of new Raman lines in GeSe and SnSe at low temperatures. Solid State Commun. 1981, 38, 1049–1052.

    Article  Google Scholar 

  24. Xia, J.; Li, X. Z.; Huang, X.; Mao, N. N.; Zhu, D. D.; Wang, L.; Xu, H.; Meng, X. M. Physical vapor deposition synthesis of two-dimensional orthorhombic SnS flakes with strong angle/temperature-dependent Raman responses. Nanoscale 2016, 8, 2063–2070.

    Article  Google Scholar 

  25. Powell, R. C. Symmetry, Group Theory, and the Physical Properties of Crystals; Springer: New York, 2010.

    Book  Google Scholar 

  26. Suh, J.; Park, T. E.; Lin, D. Y.; Fu, D. Y.; Park, J.; Jung, H. J.; Chen, Y. B.; Ko, C.; Jang, C.; Sun, Y. H. et al. Doping against the native propensity of MoS2: Degenerate hole doping by cation substitution. Nano Letters 2014, 14, 6976–6982.

    Article  Google Scholar 

  27. Ghatak, S.; Pal, A. N.; Ghosh, A. Nature of electronic states in atomically thin MoS2 field-effect transistors. ACS Nano 2011, 5, 7707–7712.

    Article  Google Scholar 

  28. Radisavljevic, B.; Kis, A. Mobility engineering and a metalinsulator transition in monolayer MoS2. Nat. Mater. 2013, 12, 815–820.

    Article  Google Scholar 

  29. Kim, S.; Konar, A.; Hwang, W. S.; Lee, J. H.; Lee, J.; Yang, J.; Jung, C.; Kim, H.; Yoo, J. B.; Choi, J. Y. et al. High-mobility and low-power thin-film transistors based on multilayer MoS2 crystals. Nat. Commun. 2012, 3, 1011.

    Article  Google Scholar 

  30. Bao, W. Z.; Cai, X. H.; Kim, D.; Sridhara, K.; Fuhrer, M. S. High mobility ambipolar MoS2 field-effect transistors: Substrate and dielectric effects. Appl. Phys. Lett. 2013, 102, 042104.

    Article  Google Scholar 

  31. Jariwala, D.; Sangwan, V. K.; Late, D. J.; Johns, J. E.; Dravid, V. P.; Marks, T. J.; Lauhon, L. J.; Hersam, M. C. Band-like transport in high mobility unencapsulated singlelayer MoS2 transistors. Appl. Phys. Lett. 2013, 102, 173107.

    Article  Google Scholar 

  32. Li, S. L.; Wakabayashi, K.; Xu, Y.; Nakaharai, S.; Komatsu, K.; Li, W. W.; Lin, Y.-F.; Aparecido-Ferreira, A.; Tsukagoshi, K. Thickness-dependent interfacial coulomb scattering in atomically thin field-effect transistors. Nano Lett. 2013, 13, 3546–3552.

    Article  Google Scholar 

  33. Perera, M. M.; Lin, M. W.; Chuang, H. J.; Chamlagain, B. P.; Wang, C. Y.; Tan, X. B.; Cheng, M. M.-C.; Tománek, D.; Zhou, Z. X. Improved carrier mobility in few-layer MoS2 field-effect transistors with ionic-liquid gating. ACS Nano 2013, 7, 4449–4458.

    Article  Google Scholar 

  34. Pradhan, N. R.; Rhodes, D.; Zhang, Q.; Talapatra, S.; Terrones, M.; Ajayan, P. M.; Balicas, L. Intrinsic carrier mobility of multi-layered MoS2 field-effect transistors on SiO2. Appl. Phys. Lett. 2013, 102, 123105.

    Article  Google Scholar 

  35. Zhang, Y. J.; Ye, J. T.; Matsuhashi, Y.; Iwasa, Y. Ambipolar MoS2 thin flake transistors. Nano Lett. 2012, 12, 1136–1140.

    Article  Google Scholar 

  36. Alharbi, A.; Shahrjerdi, D. Electronic properties of monolayer tungsten disulfide grown by chemical vapor deposition. Appl. Phys. Lett. 2016, 109, 193502.

    Article  Google Scholar 

  37. Ahn, J.-H.; Lee, M.-J.; Heo, H.; Sung, J. H.; Kim, K.; Hwang, H.; Jo, M. H. Deterministic two-dimensional polymorphism growth of hexagonal n-type SnS2 and orthorhombic p-type SnS crystals. Nano Lett. 2015, 15, 3703–3708.

    Article  Google Scholar 

  38. Ovchinnikov, D.; Allain, A.; Huang, Y. S.; Dumcenco, D.; Kis, A. Electrical transport properties of single-layer WS2. ACS Nano 2014, 8, 8174–8181.

    Article  Google Scholar 

  39. Jin, Y.; Keum, D. H.; An, S. J.; Kim, J.; Lee, H. S.; Lee, Y. H. A van der Waals homojunction: Ideal p-n diode behavior in MoSe2. Adv. Mater. 2015, 27, 5534–5540.

    Article  Google Scholar 

  40. Kim, S. U.; Duong, A. T.; Cho, S.; Rhim, S. H.; Kim, J. A microscopic study investigating the structure of SnSe surfaces. Surf. Sci. 2016, 651, 5–9.

    Article  Google Scholar 

  41. Rhoderick, E. H.; Williams, R. H. Metal-Semiconductor Contacts; 2nd ed.; Clarendon Press, Oxford University Press: Oxford [England], New York, 1988.

    Google Scholar 

  42. Castellanos-Gomez, A.; Buscema, M.; Molenaar, R.; Singh, V.; Janssen, L.; van der Zant, H. S. J.; Steele, G. A. Deterministic transfer of two-dimensional materials by all-dry viscoelastic stamping. 2D Mater. 2014, 1, 011002.

    Article  Google Scholar 

  43. Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

    Article  Google Scholar 

  44. Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775.

    Article  Google Scholar 

  45. Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

    Article  Google Scholar 

  46. Giannozzi, P.; Baroni, S.; Bonini, N.; Calandra, M.; Car, R.; Cavazzoni, C.; Ceresoli, S.; Chiarotti, G. L.; Cococcioni, M.; Dabo, I. et al. QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials. J. Phys.: Condens. Matter 2009, 21, 395502.

    Google Scholar 

  47. Doratotaj, D.; Simpson, J. R.; Yan, J. A. Probing the uniaxial strains in MoS2 using polarized Raman spectroscopy: A first-principles study. Phys. Rev. B 2016, 93, 075401.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Joseph Lyding and Arend van der Zande of the University of Illinois at Urbana-Champaign (UIUC) for insightful discussions. The authors at UIUC would like to acknowledge the NSF support through Grant ECCS 16-11279, and the Arkansas-based authors acknowledge funding from the DOE (No. DE-SC0016139). Effective mass calculations (M. M. and S. B. L.) were performed at SDSC’s Comet (Grant XSEDE TG-PHY090002). J. Y. would like to acknowledge the support from the School of Emerging Technology (SET) at the Towson University and the computing resources at the SDSC Comet provided by XSEDE (Nos. TG-DMR160088 and TG-DMR160101).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenjuan Zhu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yap, W.C., Yang, Z., Mehboudi, M. et al. Layered material GeSe and vertical GeSe/MoS2 p-n heterojunctions. Nano Res. 11, 420–430 (2018). https://doi.org/10.1007/s12274-017-1646-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-017-1646-8

Keywords

Navigation