Skip to main content
Log in

Highly π-extended copolymer as additive-free hole-transport material for perovskite solar cells

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Organolead halide perovskite solar cells have achieved a certified power-conversion efficiency (PCE) of 22.1% and are thus among the most promising candidates for next-generation photovoltaic devices. To date, most high-efficiency perovskite solar cells have employed arylamine-based hole-transport materials (HTMs), which are expensive and have a low mobility. The complicated doping procedures and the potentially stability-adverse dopants used in these HTMs are among the major bottlenecks for the commercialization of perovskite solar cells (PSCs). Herein, we present a polythiophene-based copolymer (PDVT-10) with a hole mobility up to 8.2 cm2·V−1·s−1 and a highest occupied molecular orbital level of −5.28 eV as a hole-transport layer (HTL) for a PSC. A device based on this new HTM exhibited a high PCE of 13.4% under 100 mW·cm−2 illumination, which is one of the highest PCEs reported for the dopant-free polymer-based HTLs. Moreover, PDVT-10 exhibited good solution processability, decent air stability, and thermal stability, making it a promising candidate as an HTM for PSCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Burschka, J.; Pellet, N.; Moon, S. J.; Humphry-Baker, R.; Gao, P.; Nazeeruddin, M. K.; Grätzel, M. Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 2013, 499, 316–319.

    Article  Google Scholar 

  2. Liu, M. Z.; Johnston, M. B.; Snaith, H. J. Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 2013, 501, 395–398.

    Article  Google Scholar 

  3. Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 2009, 131, 6050–6051.

    Article  Google Scholar 

  4. Kim, H. S.; Lee, C. R.; Im, J. H.; Lee, K. B.; Moehl, T.; Marchioro, A.; Moon, S. J.; Humphry-Baker, R.; Yum, J. H.; Moser, J. E. et al. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci. Rep. 2012, 2, 591.

    Article  Google Scholar 

  5. Zhou, H. P.; Chen, Q.; Li, G.; Luo, S.; Song, T. B.; Duan, H. S.; Hong, Z. R.; You, J. B.; Liu, Y. S.; Yang, Y. Interface engineering of highly efficient perovskite solar cells. Science 2014, 345, 542–546.

    Article  Google Scholar 

  6. Saliba, M.; Matsui, T.; Seo, J.-Y.; Domanski, K.; Correa-Baena, J.-P.; Nazeeruddin, M. K.; Zakeeruddin, S. M.; Tress, W.; Abate, A.; Hagfeldt, A. et al. Cesium-containing triple cation perovskite solar cells: Improved stability, reproducibility and high efficiency. Energy Environ. Sci. 2016, 9, 1989–1997.

    Article  Google Scholar 

  7. Poglitsch, A.; Weber, D. Dynamic disorder in methylammoniumtrihalogenoplumbates (II) observed by millimeterwave spectroscopy. J. Chem. Phys. 1987, 87, 6373–6378.

    Article  Google Scholar 

  8. Stranks, S. D.; Eperon, G. E.; Grancini, G.; Menelaou, C.; Alcocer, M. J. P.; Leijtens, T.; Herz, L. M.; Petrozza, A.; Snaith, H. J. Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 2013, 342, 341–344.

    Article  Google Scholar 

  9. Xing, G. C.; Mathews, N.; Sun, S. Y.; Lim, S. S.; Lam, Y. M.; Grätzel, M.; Mhaisalkar, S.; Sum, T. C. Long-range balanced electron- and hole-transport lengths in organic-inorganic CH3NH3PbI3. Science 2013, 342, 344–347.

    Article  Google Scholar 

  10. Shi, D.; Adinolfi, V.; Comin, R.; Yuan, M. J.; Alarousu, E.; Buin, A.; Chen, Y.; Hoogland, S.; Rothenberger, A.; Katsiev, K. et al. Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals. Science 2015, 347, 519–522.

    Article  Google Scholar 

  11. D’Innocenzo, V.; Grancini, G.; Alcocer, M. J.; Kandada, A. R.; Stranks, S. D.; Lee, M. M.; Lanzani, G.; Snaith, H. J.; Petrozza, A. Excitons versus free charges in organo-lead tri-halide perovskites. Nat. Commun. 2014, 5, 3586.

    Google Scholar 

  12. Yang, W. S.; Noh, J. H.; Jeon, N. J.; Kim, Y. C.; Ryu, S.; Seo, J.; Seok, S. I. High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science 2015, 348, 1234–1237.

    Article  Google Scholar 

  13. Xiao, Z. G.; Bi, C.; Shao, Y. C.; Dong, Q. F.; Wang, Q.; Yuan, Y. B.; Wang, C. G.; Gao, Y. L.; Huang, J. S. Efficient, high yield perovskite photovoltaic devices grown by interdiffusion of solution-processed precursor stacking layers. Energy Environ. Sci. 2014, 7, 2619–2623.

    Article  Google Scholar 

  14. NREL efficiency chart. http://www.nrel.gov/pv/assets/images/ efficiency_chart.jpg (accessed Dec 20, 2016).

  15. Liu, S. H.; You, P.; Li, J. H.; Li, J.; Lee, C.-S.; Ong, B. S.; Surya, C.; Yan, F. Enhanced efficiency of polymer solar cells by adding a high-mobility conjugated polymer. Energy Environ. Sci. 2015, 8, 1463–1470.

    Article  Google Scholar 

  16. Li, Y. F. Enhanced efficiency of perovskite solar cells through improving active layer morphology by interfacial engineering. Sci. China Chem. 2015, 58, 830.

    Article  Google Scholar 

  17. Xiao, J. Y.; Shi, J. J.; Li, D. M.; Meng, Q. B. Perovskite thin-film solar cell: Excitation in photovoltaic science. Sci. China Chem. 2015, 58, 221–238.

    Article  Google Scholar 

  18. Seo, J.; Noh, J. H.; Seok, S. I. Rational strategies for efficient perovskite solar cells. Acc. Chem. Res. 2016, 49, 562–572.

    Article  Google Scholar 

  19. Saliba, M.; Orlandi, S.; Matsui, T.; Aghazada, S.; Cavazzini, M.; Correa-Baena, J.-P.; Gao, P.; Scopelliti, R.; Mosconi, E.; Dahmen, K.-H. et al. A molecularly engineered holetransporting material for efficient perovskite solar cells. Nat. Energy 2016, 1, 15017.

    Article  Google Scholar 

  20. Liu, Y. S.; Chen, Q.; Duan, H.-S.; Zhou, H. P.; Yang, Y.; Chen, H. J.; Luo, S.; Song, T.-B.; Dou, L. T.; Hong, Z. R. et al. A dopant-free organic hole transport material for efficient planar heterojunction perovskite solar cells. J. Mater. Chem. A 2015, 3, 11940–11947.

    Article  Google Scholar 

  21. Zhang, H.; Shi, Y. T.; Yan, F.; Wang, L.; Wang, K.; Xing, Y. J.; Dong, Q. S.; Ma, T. L. A dual functional additive for the HTM layer in perovskite solar cells. Chem. Commun. 2014, 50, 5020–5022.

    Article  Google Scholar 

  22. Zheng, L. L.; Chung, Y. H.; Ma, Y. Z.; Zhang, L. P.; Xiao, L. X.; Chen, Z. J.; Wang, S. F.; Qu, B.; Gong, Q. H. A hydrophobic hole transporting oligothiophene for planar perovskite solar cells with improved stability. Chem. Commun. 2014, 50, 11196–11199.

    Article  Google Scholar 

  23. You, J. B.; Meng, L.; Song, T. B.; Guo, T. F.; Yang, Y. M.; Chang, W. H.; Hong, Z. R.; Chen, H. J.; Zhou, H. P.; Chen, Q. et al. Improved air stability of perovskite solar cells via solution-processed metal oxide transport layers. Nat. Nanotechnol. 2015, 11, 75–81.

    Article  Google Scholar 

  24. Fantacci, S.; De Angelis, F.; Nazeeruddin, M. K.; Grätzel, M. Electronic and optical properties of the Spiro-MeOTAD hole conductor in its neutral and oxidized forms: A DFT/TDDFT investigation. J. Phys. Chem. C 2011, 115, 23126–23133.

    Article  Google Scholar 

  25. Hawash, Z.; Ono, L. K.; Raga, S. R.; Lee, M. V.; Qi, Y. B. Air-exposure induced dopant redistribution and energy level shifts in spin-coated spiro-MeOTAD films. Chem. Mater. 2015, 27, 562–569.

    Article  Google Scholar 

  26. Noh, J. H.; Jeon, N. J.; Choi, Y. C.; Nazeeruddin, M. K.; Grätzel, M.; Seok, S. I. Nanostructured TiO2/CH3NH3PbI3 heterojunction solar cells employing spiro-OMeTAD/Cocomplex as hole-transporting material. J. Mater. Chem. A 2013, 1, 11842–11847.

    Article  Google Scholar 

  27. Li, M. H.; Hsu, C. W.; Shen, P. S.; Cheng, H. M.; Chi, Y.; Chen, P.; Guo, T. F. Novel spiro-based hole transporting materials for efficient perovskite solar cells. Chem. Commun. 2015, 51, 15518–15521.

    Article  Google Scholar 

  28. Choi, H.; Park, S.; Kang, M. S.; Ko, J. Efficient, symmetric oligomer hole transporting materials with different cores for high performance perovskite solar cells. Chem. Commun. 2015, 51, 15506–15509.

    Article  Google Scholar 

  29. Abate, A.; Leijtens, T.; Pathak, S.; Teuscher, J.; Avolio, R.; Errico, M. E.; Kirkpatrik, J.; Ball, J. M.; Docampo, P.; McPherson, I. et al. Lithium salts as “redox active” p-type dopants for organic semiconductors and their impact in solid-state dye-sensitized solar cells. Phys. Chem. Chem. Phys. 2013, 15, 2572–2579.

    Article  Google Scholar 

  30. Nguyen, W. H.; Bailie, C. D.; Unger, E. L.; Mcgehee, M. D. Enhancing the hole-conductivity of spiro-OMeTAD without oxygen or lithium salts by using spiro(TFSI)2 in perovskite and dye-sensitized solar cells. J. Am. Chem. Soc. 2014, 136, 10996–11001.

    Article  Google Scholar 

  31. Li, W. Z.; Dong, H. P.; Wang, L. D.; Li, N.; Guo, X. D.; Li, J. W.; Qiu, Y. Montmorillonite as bifunctional buffer layer material for hybrid perovskite solar cells with protection from corrosion and retarding recombination. J. Mater. Chem. A 2014, 2, 13587–13592.

    Article  Google Scholar 

  32. Jeon, N. J.; Lee, J.; Noh, J. H.; Nazeeruddin, M. K.; Grätzel, M.; Seok, S. I. Efficient inorganic–organic hybrid perovskite solar cells based on pyrene arylamine derivatives as hole-transporting materials. J. Am. Chem. Soc. 2013, 135, 19087–19090.

    Article  Google Scholar 

  33. Rakstys, K.; Abate, A.; Dar, M. I.; Gao, P.; Jankauskas, V.; Jacopin, G.; Kamarauskas, E.; Kazim, S.; Ahmad, S.; Grätzel, M. et al. Triazatruxene-based hole transporting materials for highly efficient perovskite solar cells. J. Am. Chem. Soc. 2015, 137, 16172–16178.

    Article  Google Scholar 

  34. Malinauskas, T.; Saliba, M.; Matsui, T.; Daskeviciene, M.; Urnikaite, S.; Gratia, P.; Send, R.; Wonneberger, H.; Bruder, I.; Grätzel, M. et al. Branched methoxydiphenylaminesubstituted fluorene derivatives as hole transporting materials for high-performance perovskite solar cells. Energy Environ. Sci. 2016, 9, 1681–1686.

    Article  Google Scholar 

  35. Song, Y. K.; Lv, S. T.; Liu, X. C.; Li, X. G.; Wang, S. R.; Wei, H. Y.; Li, D. M.; Xiao, Y.; Meng, Q. B. Energy level tuning of TPB-based hole-transporting materials for highly efficient perovskite solar cells. Chem. Commun. 2014, 50, 15239–15242.

    Article  Google Scholar 

  36. Huang, C. Y.; Fu, W. F.; Li, C. Z.; Zhang, Z. Q.; Qiu, W. M.; Shi, M. M.; Heremans, P.; Jen, A. K. Y.; Chen, H. Z. Dopant-free hole-transporting material with a C 3h symmetrical truxene core for highly efficient perovskite solar cells. J. Am. Chem. Soc. 2016, 138, 2528–2531.

    Article  Google Scholar 

  37. Yan, W. B.; Li, Y.; Ye, S. Y.; Li, Y. L.; Rao, H. X.; Liu, Z. W.; Wang, S. F.; Bian, Z. Q.; Huang, C. H. Increasing open circuit voltage by adjusting work function of hole-transporting materials in perovskite solar cells. Nano Res. 2016, 9, 1600–1608.

    Article  Google Scholar 

  38. Peng, H. T.; Sun, W. H.; Li, Y. L.; Ye, S. Y.; Rao, H. X.; Yan, W. B.; Zhou, H. P.; Bian, Z. Q.; Huang, C. H. Solution processed inorganic V2Ox as interfacial function materials for inverted planar-heterojunction perovskite solar cells with enhanced efficiency. Nano Res. 2016, 9, 2960–2971.

    Article  Google Scholar 

  39. Kim, G.-W.; Kang, G.; Kim, J.; Lee, G.-Y.; Kim, H. I.; Pyeon, L.; Lee, J.; Park, T. Dopant-free polymeric hole transport materials for highly efficient and stable perovskite solar cells. Energy Environ. Sci. 2016, 9, 2326–2333.

    Article  Google Scholar 

  40. Dubey, A.; Adhikari, N.; Venkatesan, S.; Gu, S. P.; Khatiwada, D.; Wang, Q.; Mohammad, L.; Kumar, M.; Qiao, Q. Q. Solution processed pristine PDPP3T polymer as hole transport layer for efficient perovskite solar cells with slower degradation. Sol. Energy Mater. Sol. Cells, 2016, 145, 193–199.

    Article  Google Scholar 

  41. Chen, H. J.; Guo, Y. L.; Yu, G.; Zhao, Y.; Zhang, J.; Gao, D.; Liu, H. T.; Liu, Y. Q. Highly π-extended copolymers with diketopyrrolopyrrole moieties for high-performance field-effect transistors. Adv. Mater. 2012, 24, 4618–4622.

    Article  Google Scholar 

  42. Li, Z. H.; Liu, J.; Ma, J. Y.; Jiang, Y.; Ge, Q. Q.; Ding, J.; Hu, J. S.; Wan, L. J. Solvent-assisted preparation of highperformance mesoporous CH3NH3PbI3 perovskite solar cells. J. Nanosci. Nanotechnol. 2016, 16, 844–850.

    Article  Google Scholar 

  43. Jeon, N. J.; Noh, J. H.; Kim, Y. C.; Yang, W. S.; Ryu, S.; Seok, S. I. Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells. Nat. Mater. 2014, 13, 897–903.

    Article  Google Scholar 

  44. Li, W. Z.; Fan, J. D.; Li, J. W.; Mai, Y. H.; Wang, L. D. Controllable grain morphology of perovskite absorber film by molecular self-assembly toward efficient solar cell exceeding 17%. J. Am. Chem. Soc. 2015, 137, 10399–10405.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Basic Research Program of China (No. 2015CB932302), the National Natural Science Foundation of China (Nos. 21573249 and 21474116), and the Strategic Priority Research Program of the Chinese Academy of Sciences (Nos. XDB12020100 and XDB12030100).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gui Yu or Jinsong Hu.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Ge, Q., Zhang, W. et al. Highly π-extended copolymer as additive-free hole-transport material for perovskite solar cells. Nano Res. 11, 185–194 (2018). https://doi.org/10.1007/s12274-017-1618-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-017-1618-z

Keywords

Navigation